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Chapter A  Fundamental Equations for Fluid Dynamics 
 
 
1. Compressible Navier-Stokes Equations 
   Let me start from Compressible Navier-Stokes equations (CNS) using vector description as follows: 

  0 u t                                       (1-1) 

  Πpt   uuu                              (1-2) 

    quu   peet                        (1-3) 

where  , u , p , Π , e  and q  are the density, velocity vector, pressure, viscous stress tensor, total 
internal energy per unit volume, and the vector of heat flux. t  is the time and the subscription t  means 
the partial derivation with respect to time.  First, second, and third equations are respectively the mass 
conservation law, momentum conservation law, and the energy conservation law.  

These equations can be rewritten using tensor description: 
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where    zyxxxx ,,,, 321   and    wvuuuu ,,,, 321   for three dimensions in space. Originally for 

example,    
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x ii  . T  and   are the temperature and heat conductivity coefficient. ij  

is the viscous stress tensor and defined by 
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where   and ij  are the molecular viscosity and Kronecker’s delta. Second equation Eq. (1-5) is 

composed of three momentum equations along zyx ,,  directions if 3,2,1j .  
CNS is not a closed system itself because the pressure p as unknown variable is still unresolved. 

Assuming ideal gas, CNS can be closed by the equation of state: 
     2121 iiuueeRTp   uu                (1-8) 

where R  and   are the specific gas constant and specific heat ratio ( 4.1 ). 
   CNS can be written using tensor description in vector form: 
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where Q , iF  and viF  are the vectors of unknown variables, convection and pressure terms (convection 

flux), and the diffusion terms (diffusion flux). CNS in two dimensions may be easily derived from that 
of three dimensions as 
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   CNS may be usually described by the following vector form: 
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The viscous stresses are defined by 
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2. Non-dimensionalization on CNS 
   Non-dimensionalizing CNS may be valuable for variables defined in CNS with different units and 
orders of magnitude, especially if we simulate a multiphysics problem with CNS. Multiphysics 
computational fluid dynamics (MCFD) is a research field which solves flows with additional physics such 
as reaction, multiphase, the phase change, and external forces due to additional physics. Such external 
forces are modeled as a source term and added to CNS. Since such source terms generally have 
complicated units, the fully non-dimensionalization might be impossible. The following 
non-dimensionalization process may help the addition of the multiphysics source terms to already 
non-dimensionalized CNS. Then we add source terms  5,,1js j  to CNS as  
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First, all variables are non-dimensionalized as follows: 
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The upper bar indicates the non-dimensionalized variable.  L [m],  [kg/m3] and V [m/s] are the 

reference values of length, density and velocity. reft  is a reference time and can be derived from the other 

variables as  VLtref . T ,   and   are the  reference values of temperature, molecular 

viscosity coefficient, and heat conductivity coefficient. These values are explained later. 
   Next Eqs. (2-1)-(2-3) are non-dimensionalized using the non-dimensionalized variables. Eq. (2-1) as 
the mass conservation law with a source term is non-dimensionalized as follows: 

  1su
xt i









i
 

 
      1sVu

Lxtt iref












i
 

  1su
xL

V

tt iref







 

i
 

  1sV

L
u

xt i 












i                             (2-5) 

The fourth equation has a final form. The form at the left-hand side (l.h.s.) is all the same with the original 
form except for the upper bar, while the source term 1s  at the right-hand side (r.h.s.) was multiplied by

VL  . The value derived as VL   is quite important one. We have only to know this value if a 

dimensional source term 1s  is added to the mass conservation law even if the unit is unknown. 
   Eq. (2-2) as momentum equations with a source term are also non-dimensionalized as follows: 
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Since the Reynolds number is defined by   LVRe , the coefficient of viscous stress term is 
reduced to the following equation: 
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The time derivative and the convection term are the same form with the original term except for the upper 
bar. ij  is also derived as the same form: 



































k

k
ij

i

j

j

i
ij x

u

x

u

x

u
ˆ3

2                              (2-8) 

Non-dimensionalized process for Eq. (2-3) as the energy conservation law with a source term is as 
follows: 
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The coefficient of the heat flux is further transformed using some thermodynamic relations as 
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where pc and Pr  are a reference isobaric specific heat and the laminar Prandtl number. Reference 

values of speed of sound and the Mach number are    Pc2
 and   cVM . Finally 

non-dimensionalized form for energy conservation law with a source term is given by 
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Non-dimensionalized CNS with source terms are summarized as follows (upper bar was removed): 
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












e

ρu

ρu

ρu

ρ

Q

3

2

1

, 

  




























i

ii

ii

ii

i

i

upe

pδuρu

pδuρu

pδuρu

ρu

F

33

22

11

, 

  































 i
kki

i

i

i

vi

x

T

PrM
uτ

τ

τ

τ

F

2

3

2

1

1

0




, 



































2
5

4

3

2

1

Vs

Vs

Vs

Vs

s

V

L
S


 

 
3. General Curvilinear Coordinates 
   We employ the general curvilinear coordinates   ,,  to solve CNS along a body fitted coordinates. 
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  ,,  are the functions of  zyx ,,  given by  

     zyxzyxzyx ,,  ,,,  ,,,                              (3-1) 

The total differentials of   ,,  and  zyx ,,  are defined by 

dzdydxd

dzdydxd

dzdydxd

zyx

zyx

zyx













  

  

                              (3-2) 













dzdzdzdz

dydydydy

dxdxdxdx





   

                             (3-3) 

The metrics of   ,,  are derived from these relations as follows: 

 
   

  







































































yxyxzxzxzyzy

yxyxzxzxzyzy

yxyxzxzxzyzy

J

zzz

yyy

xxx

zyx

zyx

zyx

1
                        

1

             (3-4) 

where J  is Jacobian for transformation and defined by 

 
 

     









zyzyxzyzyxzyzyx

zzz

yyy

xxx
zyx

J









   

 , ,

 , ,

                 (3-5) 

CNS are transformed to general curvilinear coordinates using the metrics and the Jacobian. The following 
original form of CNS is introduced again: 

z

H

y

G

x

F

z

H

y

G

x

F

t

Q vvv




























                     (3-6) 

The viscous terms are combined with the convection terms as follows: 
     

0















z

HH

y

GG

x

FF

t

Q vvv                   (3-7) 

Space derivative terms are redefined using F , G  and H  by 

0















zyxt HGFQ
z

H

y

G

x

F

t

Q
                   (3-8) 

The space derivatives of fluxes F , G  and H  are transformed to   ,,  coordinates as follows: 

0 HHHGGGFFFQ zzzyyyxxxt             (3-9) 

 
           

         
          0         

         



















zzzzyx

yyyzyx

xxxzyxt

JJJHHGFJ

JJJGHGFJ

JJJFHGFJJQ

             (3-10) 

The metric terms in the bracket at the second term for each coordinate are disappeared, for example, as the 
following manner: 
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     
      0





 

zyzyzyzyzyzy

JJJ xxx
                (3-11) 

   Finally CNS in general curvilinear coordinates are obtained as 

0ˆˆˆˆ   HGFQt                               (3-12) 

 
 
 HGFJH

HGFJG

HGFJF

JQQ

zyx

zyx

zyx















ˆ

ˆ

ˆ

ˆ

 

 
 
 

    




























zzyyxx

zzzyzyyzzz

zyzyyyyxxy

zxzyxyxxxx

Upe

pwU

pvU

puU

U

JF








ˆ  

 
 
 

    




























zzyyxx

zzzyzyyzzz

zyzyyyyxxy

zxzyxyxxxx

Vpe

pwV

pvV

puV

V

JG








ˆ  

 
 
 

    




























zzyyxx

zzzyzyyzzz

zyzyyyyxxy

zxzyxyxxxx

Wpe

pwW

pvW

puW

W

JH








ˆ  

where U , V  and W  are the contravariant velocities defined by 

wvuW

wvuV

wvuU

zyx

zyx

zyx













                                 (3-13) 

and x , y  and z  are sets of diffusion terms: 

zTwvu

yTwvu

xTwvu

zzyzxzz

zyyyxyy

zxyxxxx













                        (3-14) 

CNS in general curvilinear coordinates can be written using tensor description as follows: 

i

vi

i

i
t

FF
Q

 







ˆˆ

ˆ                                    (3-15) 
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 

,ˆ,ˆ

3
3

2
2

1
1

3

2

1











































































i

i
i

i
i

i
i

i

j
j

i
i

Upe

p
x

Uu

p
x

Uu

p
x

Uu

U

JF
x

JF

e

u

u

u

JJQQ
















  







































j
kjk

j

j

j

j

i
vj

j

i
vi

x

T
u

x
JF

x
JF









3

2

1

0

ˆ  

 
4. Conservation and Non-conservation Forms 
   CNS is basically composed of conservation laws for mass, momentum and energy. The conservation 
law means that fundamental equations satisfy also the conservation of mass. Mass conservation law 
proves the conservation of mass itself. Momentum and energy equations implicitly include the mass 
conservation law in them. Let me divide conservation laws to the conservation part and the 
non-conservation part. After one dimensionalizing Eq. (1-10) with releasing the viscous terms, the 
following equations are obtained as governing equations for one-dimensional inviscid flows called Euler 
equations: 

0 xt FQ                                  (4-1) 

               

  



































upe

pu

u

F

e

uQ 2, 





　                                    

Momentum equations are originally formed as the sum of mass conservation law and a non-conservative 
momentum equation as 

   0











 x
xtxt

p
uuuuu                          (4-2) 

The energy equations implicitly include not only mass conservation law but also non-conservative 
momentum equations. This equation is originally formed as the sum among the mass conservation law, 
the non-conservative momentum equation and an equation for specific internal energy as 

   0

















 xxt
x

xtxt u
p

u
p

uuuuu
e








           (4-2) 

where   is the specific internal energy per unit volume and 22ue   . 

Consequently the following matrix description identified to the conservative Euler equations: 
 

00

001















































xxt

xxt

xt

puu

puuu

u

ue

u                          (4-3) 

Equations in the vector in Eq. (4-3) correspond to non-conservative Euler equations. 
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Chapter B  Fundamental of Computational Fluid Dynamics (CFD) 
 
1. Euler Equations and Characteristic Speeds 
   Since compressible flows conditionally generate shock waves when the speed exceeds the speed of 
sound, accurately capturing shocks is crucial for compressible flow simulation. A number of the so-called 
shock capturing methods have been developed by applied mathematicians and CFD research scientists. 
Most of the methods were based on the theory of characteristics which is a theory for hyperbolic system. 
The theory can be applied to the system with arbitrary number of independent variables, but actually the 
theory for two independent variables is still standard for shock capturing methods. This theory has been 
applied to multi-dimensional compressible flows governed by two- or three-dimensional Navier-Stokes 
equations. Then the equations have more than two independent variables such as  zyxt ,,, . It suggests 
that the theory of characteristics for two independent variables is not exact for multi-dimensional 
Navier-Stokes equations. In addition, Navier-Stokes equations are not a hyperbolic system. We should 
keep in mind that most of current CFD methods for compressible flows employ shock capturing methods 
based on the theory for two independent variables.  
   The theory of characteristics for two independent variables is exact in one-dimensional Euler 
equations.  
   One-dimensional Euler equations are written in vector form:  

0 xt FQ                                (1-1) 

 

  



































upe

pu

u

F

e

uQ 2, 





　                          (1-2) 

Another vector form is also given by  
0 xt AQQ                                  (1-3) 

where A  is the Jacobian matrix defined by QFA   and derived as the following matrix: 

    
    


















uueueu

uuA

 2 13 1

1 323

010

23

2


                   (1-4) 

Note that u  should be defined as one unknown variable when the elements of A  are derived. 
Next relation is obtained when AQ  is calculated. 

 AQF                       (1-5) 
Consequently, we can obtain the following relations called ‘Euler’s homogeneity relation’ from Eqs. (1-1) 
and (1-3): 

  xxx AQAQF                       (1-6) 

Eq. (1-6) indicates that A  is independent to partial derivatives. This property is quite important for 
applying the theory of characteristics to Euler equations. 
  Eq. (1-3) is transformed from the conservation form to a non-conservation form as 

 0
~~~  xt QAQ                                    (1-7) 

where Q
~

 is the vector of unknown variables in non-conservation form (i.e., primitive variables) and A
~

 
is the Jabobian matrix in non-conservation form as follows: 

 



































uc

u

u

A

p

uQ
20

10

0
~

,
~





　                            (1-8) 

where c  is the speed of sound. Eq. (1-7) can be derived by the multiplication of a matrix QQN  ~
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from the left on Eq. (1-3), where N  is the matrix for transformation from conservation form to 
non-conservation form. Then we obtain a relation 1~  NANA .  

   The eigenvalues of A
~

 are derived from the characteristic equation: 

 0
~  IA                                     (1-9) 

where   indicates the eigenvalues. We can obtain three different real eigenvalues: u1 ,  cu 2  

and cu 3 . Since the set of equations is hyperbolic when all eigenvalues of the characteristic 

equation are real, the set of one-dimensional Euler equations is proved as a hyperbolic system. 
   The eigenvalue is called ‘characteristic speed’ in CFD research field. The matrix IA ~

 has three 
row vectors or three column vectors, and the orthogonal vectors (i.e. eigenvectors) are exist as  

   0
~  IAl k

k                                    (1-10) 

where  3,2,1kl k  identifies to left eigenvectors. From Eq. (1-10), we can define a matrix   for 

eigenvalues and a matrix L
~

 composed of left eigenvectors:  

 








































c

c

c

L

cu

cu

u




110

110

101
~

,

2

　                  (1-11) 

and can derive a relation LLA
~~~ 1  . Because LLA

~~~ 1  and 1~  NANA , the following relation can 
be obtained: 

NLLNA
~~ 11                                     (1-12) 

 
 
2. Flux Vector Splitting (FVS) 

Eq. (1-1) is discretized by Finite Difference Method (FDM). First the convection flux vector F in Eq. 
(1.2) is discretized here as  

   xFFQ jjt   2121                           (2-1) 

where 21jF  are the numerical flux vectors defined at the intermediate grid point 2/1j  between grid 

points j  and 1j ; that at 2/1j  between 1j  and j . x  is the grid interval with a constant 
value. 

Steger and Warming [1] splits F to F and F according to the signs of characteristic speed and 
redefined by 

   FFF                              (2-2) 
where F are obtained using Eq. (1-12) as 

NQLLNQAF
~~ 11                                 (2-3) 

  are the matrices composed of only positive and negative eigenvalues defined by 
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                       (2-4) 

The eigenvalues are calculated from    1,2,3  2  kkkk  .  

   The flux vectors F  are finally derived as the sum of three subvectors: 

 
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u

uF               (2-5) 

where h  is the total enthalpy and   peh  . The flux vectors 21jF  are up-winded by the signs of 
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characteristic speed in Eq. (2-5). For example, 21jF  can be obtained at the first-order accuracy as the 

following relation when all characteristic speeds are positive (i.e. supersonic flow)  
 jjj FFF  

 21                                    (2-6) 

Because the gradient of Eq. (2-5) is discontinuous at Mach number 1,0,1 　　M , Steger-Warming 
method cannot be used at subsonic region straightly. van Leer [2] proposed another flux vectors which are 
smoothly connected at the Mach numbers. But, too dissipative in boundary layers was addressed both for 
Steger-Warming’s method and van Leer’s method. Although Steger-Warming’s method has such 
restriction, this method is exact at supersonic region for one-dimensional Euler equations. Note that FVS 
methods are not exact for multi-dimensional flows or viscous flows (i.e. Navier-Stokes equations).  
 
3. Flux Difference Splitting (FDS) 

Roe [3] proposed the FDS algorithm. FDS splits not the flux vectors but the difference of flux vectors. 

The difference F  is defined by the sum of flux vectors QA   as  

 QAQAF                           (3-1) 

where Q  is the difference of Q  and A  are Jacobian matrices composed of elements obtained from 
only positive and negative eigenvalues.  

Eq. (2-1) is rewritten using Eq. (3-1) as 
     xQAQAQ jjt  





2121                            (3-2) 

where jjj QQQ   121  and QA   are obtained using Eq. (2-3) as  
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                                     (3-3) 

NLL
~  is the matrix composed of conservative left eigenvectors and  321 wwwW  ，，  are the 

vector of characteristic variables;  3,2,1krk  is the conservative right eigenvectors. In Roe’s method, 

 2/1jA  are calculated only using jQ and 1jQ , and a special averaging called Roe’s averaging is 

conducted to satisfy the conservation and the nonlinearity. Then the averaged values  , u , h  and 2c  
are defined by 
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Characteristic speeds and the right eigenvectors are calculated using Eq. (3-4) as   
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               (3-5) 

 
and characteristic values  3,2,1 kwk  are defined by 
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2
3

2
2

2
1
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cpuw
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











                          (3-6) 

  
where       jj  1 .  

Roe’s FDS approximates the flux vector using averaged variables as 

    xrwrwQ
k

k
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
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




2121                       (3-7) 

where   2kkk  
.  

Roe’s FDS guarantees the space accuracy even in boundary layers. However, this method has a 
problem in which capturing detached bow shock in supersonic flow is inaccurate. Liou [4] proposed 
Advection Upstream Splitting Method (AUSM) to improve the inaccuracy. But this method also has 
another trouble in the method. 

The Riemann Problem is known as a local one-dimensional shock tube problem. Roe’s FDS belongs to 
the so-called approximate Riemann solver. A local cell is defined at the local region between the grid 
points 2/1j  and 2/1j . The Riemann problem is solved at the interface between neighboring cells. 

Primitive values obtained from the left side and the right side are defined as LQ
~

 and RQ
~

 at the interface 

2/1j  of two cells. Then the numerical flux of Roe’s method can be redefined using LQ
~

 and RQ
~

 by 
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

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，

                (3-8) 

Also this approach can be applied to FVS as  

    RLj QFQFF
~~

21


                   (3-9) 

 
4. MUSCL Extrapolation 

One of popular approaches obtaining the primitive variables LQ
~

 and RQ
~

 is Monotone 
Upstream-centered Schemes for Conservation Laws (MUSCL) [5]. These variables are calculated from 
the following interpolation: 
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Eq. (4-1) results in a second-order upwind and a third-order biased upwind if 1  and 31 . We 
proposed a fourth-order biased upwind version called Compact MUSCL [6] as follows:  
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5. TVD and Limiter Function 
Robustness with high accuracy is required for Riemann solvers to capture shocks accurately and stably. 

General high-order finite differences may induce a numerical oscillation at the shock location, while 
first-order upwind difference keeps monotonicity even at the shock, resulting in no oscillation. von 
Neumann’s stability analysis can find the stable condition for a linear scalar equation. TVD（Total 
Variation Diminishing）is a stability method for a nonlinear scalar equation proposed by Harten [7]. 
Numerical schemes satisfying the TVD condition are called TVD scheme. In most of TVD schemes, a 
high-order accurate method is basically employed and the accuracy is reduced to first order only near the 
shock, because the first-order upwind difference unconditionally satisfies the TVD condition. Several 
limiter functions such as Minmod limiter [7], van Leer’s limiter [8], Roe’s Superbee limiter [9], and 
Chakravarthy-Osher’s limiter [10] for switching the accuracy have been proposed.  

Compact MUSCL employs two-step minmod limiters: 
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where 2,41 21  bb  and the minmod function is defined by 

         nn aaaaaaaa  121111 sign,,sign,min,0maxsign,,minmod               (5-2) 

 
6. Time Integration 
 Eq. (2-1) can be solved by the time-marching method. The simplest method is called Euler Forward 
Method defined by 
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                              (6-1) 

where n  and t  are the time step and the time interval. 1nQ  is the unknown vector updated from all 
known values at n  time step in first-order accuracy as 

 n
j

n
j

nn FF
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t
QQ 2121

1
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


               (6-2) 

The time-marching method in which 1nQ  is obtained from only known values at n  time step is called 
the explicit method. The time interval t  is limited by CFL (Courant-Friedrichs-Lewy) number defined 
by xtc  , where c  is a convection speed. This number should be 1  FL C  for the explicit methods to 
keep the linear stability, otherwise solution may be diverged. To remove the limitation, the implicit 
methods in which 1nQ is integrated using the values at the same 1n  time step have been proposed. 
Then, the inversion of a matrix is basically solved.  
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   Approximate factorization (AF) method [11] was one of typical implicit methods ever used around 
until 1990.  Now here two-dimensional Euler equations are defined by 

 1,2  0  ixQAQxFQ iiitiit                        (6-3) 

Then, AF method applied to Eq. (6-3) is derived as the following form: 

   RHSxFtQxAtIxAtI i
n

i
n  2211                (6-4) 

where 1  for fully implicit method and 21  for Crank-Nicholson method. Twice inversions of a 
block diagonal matrix should be solved for the time integration in Eq. (6-4). This equation can be further 
derived using Eq. (2-3) as follows [12]: 

      RHSNLQNLtILLtI n  
~~~~

122222
1

211111                  (6-5) 

where i  and i  are the forward and backward difference operators. Since two inversions of a scalar 

diagonal matrix are only solved in Eq. (6-5), the computational cost can be significantly reduced from that 
for Eq. (6-4). 

We proposed a maximum second-order accurate AF method [13] based on Crank-Nicholson method 
and Newton iteration given by 

            mmmmmm
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where 

    2

1

i
n

ii
m

i
nmm

mmm

xFxFtQQRHS

QQQ



 

                            (6-7) 

m  is the Newton iteration. nm QQ   if 0m   and  0   1   mnm QQQ  if m . Then, a 
solution with maximum second-order in time can be obtained. 
   Another popular implicit method is LU-SGS (Lower-upper Symmetric Gauss-Seidel) method [14]. 
Currently many CFD methods may be coupled with LU-SGS. This method is defined by the following 
two-step process for Eq. (6-3): 
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where    2,1  ,  kA jik  are the Jacobian matrices split by the sign of characteristic speed in kx directions 

at the grid point  ji, . These matrices are approximately calculated from 

       2 ,,, IrAA jikjikjik                                  (6-9) 

  jikr ,
 is the spectral radius of   jikA ,

 obtained by 

     jikjikr ,, max                                     (6-10) 

1  and   jik ,  are the characteristic speeds of   jikA , .  

The operator D  is calculated from the following algebraic equation:  
  

k
jikrtID ,                                       (6-11) 

No matrix inversion is executed for LU-SGS even though LU-SGS is an implicit method. A forward and a 
backward sweeps for solving Eq. (6-8) on the so-called hyper plane which is a skew line (plane) across 
grid points are only required. Conclusively LU-SGS method may accept a large CFL number exceeding 
one.  

We also apply the Crank-Nicholson method and the Newton iteration to Eq. (6-8). The maximum 
second-order accurate LU-SGS method [15] is given by 
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Chapter C  Modeling for Condensation 
 
1. General Dynamic Equation (GDE) [1] 
 GDE governing the nucleation and the growth of small particle; the coagulation due to Brownian 
motion is defined by  

  coagfvvI
Dt

Df
 *           (1-1) 

where f  is a distribution function of particles with respect to the time t , space jx  and the volume v  

for a small sphere particle with radius r , i.e.  txvff j ,, . L.h.s. of Eq. (1-1) is expanded to the 

following equation: 
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where  321 ,,ju j   are the particle velocities in  321 ,,jx j   directions. The first term at r.h.s. in Eq. 

(1-1) is a function composed of nucleation rate I , Dirac’s delta function, volume v  and a particle 
volume *v with the critical radius *r . The second term coagf  is for coagulation due to Brownian 

motion.  
 
2. Method of Moments (MoM) [2] 
 MoM has been used for simplifying GDE.  Eq. (1-1) multiplied by ),3,2,1(  v  is integrated 
over the volume v  as 
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The first term at r.h.s. results in    **
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 , Eq. (2-1) can be transformed to the following equation: 
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M  is called th moment. The second term at r.h.s. in Eq. (2-2) is derived from the second term at l.h.s. 

in Eq. (2-1). Hill [3] introduced an averaged particle radius into GDE. Here we introduce an averaged 
particle volume v . Then tvtv  . This relation simplifies the second term at r.h.s. in Eq. (2-2) to  
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Finally Eq. (2-2) is redefined by  
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For example, Eq. (2-4) includes the following equations for 0th, 1st and 2nd moments:  
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where dvfvS coag



0


 （ S  is derived later）.  These moments have units: 0M  [1/m3]， 1M  [ m3/m3] 

and 2M  [ m3] . 


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   Let me further transform Eqs. (2-5)-(2-7) to another description. 0M is the number density of particles 

per unit volume. Here 0M  is replaced by n , where n  is the number density of particles per unit mass 

[1/kg] and   is the total density of fluid [kg/m3].  Then Eq. (2-5) is rewritten as 
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The density of particles is defined by , where   is the mass fraction of particle. Also the density of 

a liquid particle   [kg/m3] multiplied by v  [m3] and the number density n  [1/m3] identifies to the 

mass of particles per unit volume. Then we obtain the following relation: 
nv          (2-9) 

Assuming the averaged volume of particles, nvMvfdvvM  
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001 . Then Eq. (2-8) is further 

transformed to the equation for density of particles as 
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34 3rv   in which r  is the averaged radius of a particle, and the time derivative is 

trrtv  24 , giving another form of Eq. (2-10) as 
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Locally assuming averaged volume of particles identifies to the assumption of monodisperse system. 
We’ve employed the same equation with Eq. (2-11) for moist-air and wet-steam flow simulations [4]. 
Then, local averaged radius of particles is obtained from 34 3 nr   as the following equation: 
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On the other hand, system locally including particles with a different radius is called polydisperse system.  
 
3. Nucleation Model 
   We know primary two types for nucleation of particles. One is homogeneous nucleation where 
condensation suddenly starts without nucleus. Another is heterogeneous nucleation starting from already 
existing nucleus. Former nucleation induces a strong nonequilibrium condensation due to a high saturation 
(supercooled) condition; the condensation is called nonequilibrium condensation. For example, wet-steam 
flows in steam turbines are governed by such nonequilibrium condensation, while aerosol in atmosphere 
is formed by condensation based on the heterogeneous nucleation in which a small particulate in 
atmosphere may act as nucleus.  

Here we introduce the nucleation rate I governing homogeneous nucleation based on the classical 
nucleation theory [5].  

First, a well-known model of nucleation rate [6] which we usually employ is defined by  
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where c , m ,  , v ,  , Bk  and T are respectively the condensation coefficient, mass of a 

molecular composing particles, surface tension of a particle, density of vapor, density of a particle,  
Boltzmann constant and the temperature of a particle. *r is the critical radius of a particle. 

Nucleation rates not only for wet steam but also for aerosol, metal nanoscale particle, and polymer 
nanoscale particle have already been modeled.  

Let me explain the process of the derivation. First, primary thermodynamics underlying nucleation is 
governed by Gibbs's free energy (GFE) based on the first and second laws of thermodynamics defined by 
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TspVUG                                     (3-2) 
where U , p , V , T and s  are the internal energy, pressure, volume, temperature and the entropy in a 
closed system. 
   Differential of Eq. (3-2) are given by 

sdTTdsVdppdVdUdG              (3-3) 
Also the differential of internal energy U is defined by 

pdVTdsdU                (3-4) 
If Eq. (3-4) is substituted into Eq. (3-3), the following relation is obtained: 

sdTVdpdG                (3-5) 
 GFE identifies to the required energy for phase change from uniform vapor to nucleus of a particle like 
the energy wall which must be climbed over. The difference of GFE can be derived using those under 
vapor and nucleus conditions as 
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where lmg  and vmg  are GFE for one molecule in liquid and vapor states. totaln  and liquidn  are the 

number of total molecules which phase can be changed and the number which phase was changed to 
liquid.  24 r  identifies to GFE originating from the surface tension   for a particle with radius r . 

lmdg  and vmdg  are obtained from Eq. (3-5) assuming an equal temperature field as  

     , dpvdgdpvdg vmvlmp          (3-7) 

where lmv  and vmv  are the volumes for one liquid molecule and one vapor molecule. Eq. (3-7) can be 

approximated assuming lmvm vv   as 

    dpvdpvvggd vmvmlmvmlm              (3-8) 

Vapor is assumed as ideal gas; substituting the equation of state Tkpv Bvm   into Eq. (3-8), then 
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Integrating Eq. (3-9) from vapor saturation pressure sp to vapor pressure vp around a liquid particle with 

radius r , the following equation is derived: 

s

v
B

p

pBvmlm p

p
Tk

p

dp
Tkgg

v

s

ln                 (3-10) 

Eq. (3-6) can be redefined using Eq. (3-10) by 
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sv ppS  as saturation ratio and 34 3rnv liquidlm   rewrite Eq. (3-11) as 
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Eq. (3-12) is always positive when 1S , while the first term at r.h.s. is negative when 1S .  
   Partially differencing Eq. (3-12) with respect to r can find the maximum value of GFE as  
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where *r  is the radius of particle at the maximum GFE obtained by 
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*r  identifies to the critical radius of liquid particle. Then GFE has a maximum value *G under a 

metastable condition. GFE decreases soon when r  is larger or smaller than *r . GFE is also smaller 

when S  is larger because of smaller *r .  

   The saturation pressure of a liquid particle with radius r can be derived from Eq. (3-14) as  
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This equation is known as Kelvin's equation. rsp ,  increases while increasing in r and reaches sp at 

 rr . *G is finally obtained as the following equation: 
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We know some methods introducing nucleation rate I  based on mechanical and statistical approaches. 
Those methods are generally too complicated to understand. Alternatively let me start from the following 
definition proposed by Volmer [7] assuming that the rate of nucleation due to homogeneous nucleation has 
a Boltzmann distribution: 
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On the other hand, I is proportional to the product of the number of molecules eqn in a liquid particle 

which is in equilibrium state at the critical radius *r and the collision frequency *C  for vapor molecules 

colliding to the liquid particle given by 
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totaln  is the total number of vapor molecules which can be changed to liquid molecules. *C  is defined 

according to the kinetic theory of molecule by 

total
B

ctotalmc nr
m

Tk
nruC 2*2**  

8
 


        (3-20) 

where mu  is the mean averaged molecular speed and m is the mass of a liquid molecule. Using Eqs. 

(3-18)-(3.20), the following nucleation rate is derived: 
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Helfgen [8] modified Eq. (3-21) to 
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where z  is Zeldvich nonequilibrium factor. Hill [3] and Kotake [9] defined the similar equation: 
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Since the vapor pressure is Tknp Btotalv  , Eq. (3-23) can be rewritten as the same equation to Eq. (3-22). 

The detail derivation of z  is explained in Refs. [5] [10]. z  is a correction coefficient to take the 
second-order term of *G into account given by 
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Substituting Eq. (3-24) to Eq. (3-23), then 
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Eq. (3-25) identifies to the equation proposed by Debenedetti [11].  
Also substituting Eq. (3-24) to Eq. (3-22),  
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Since mvlm  and mn vtotal  , Eq. (3-27) can be rewritten as 
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Eq. (3-27) identifies to the equation employed by Young [6] and Schnerr [12]. 
   We get a conclusion that nucleation rates defined for wet-steam flows, aerosol particles, metal 
nanoscale particles and polymer particles are basically the same model. Note here that all the existing 
models for nucleation rate assume ideal gas, i.e. Tkpv Bv  . Debenedetti [11], Kwauk [13], Helfgen [8] 

and Türk [14] studied Rapid Expansion of Supercritical Solutions (RESS) based on the nucleation rate 
model for polymer nanoscale particles. RESS is a process for producing small polymer particles. 
Supercritical carbon dioxide (SCO2) is employed as a solvent. SCO2 with a solute material streaming in a 
capillary nozzle is expanded in an expansion chamber, resulting in the loss of solvent power and hence 
precipitation of the solute. Debenedetti [11] found that non-ideality of SCO2 increases the free energy 
barrier against nucleation of solute material, and the increase may reduce the number density of particles; 
the classical nucleation theory originally derived assuming an ideal gas is not accurate for SCO2. It 
suggests that EOS for ideal gas applied to nucleation rate should be replaced by a general EOS which is 
accurate even for SCO2. 
   For example, we know a EOS for SCO2 proposed in IUPAC [15] defined by 
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where the parameters in Eq. (3-28) were also defined in IUPAC.  
   Now the difference between EOS for ideal gas and that by Eq. (3-28) is defined by  , then 

 TknRTp Btotalvreal   or Tkvp Blmreal  . Eq. (3-14) can be redefined by 
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Using Eqs. (3-28) and (3-29) coupled with accurate thermophysical properties, we successfully simulated 
a high-pressure wet-steam flow through a nozzle [16] which problem cannot accurately be predicted by 
the nucleation model based on ideal-gas EOS.   
 
4. Condensation Model 

Here the growth rate dtvd  for condensation of liquid particles is modeled. The averaged number of 
incoming and outgoing molecules on a liquid particle with an averaged radius r per unit time is defined 
by 
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Assuming that liquid particles grow (evaporate) due to the collision (separation) of vapor molecules and 
the radius of liquid particles are sufficient smaller than the mean-free path of vapor molecules, then 
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condensation follows Hertz-Knudsen's law. The growth rate dtvd  is derived using nvv lm as 
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where T  is the temperature of liquid particle.  Assuming TT  ,  
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Since   3
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2 364 vr   from 34 3rv   and Tknp Btotals  , Eq. (4-3) can be written as 
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Eq. (4-4) identifies to the equation proposed by Pratsinis [2].  
Also dtrdrdtvd 24  changes Eq. (4-4) to the following equation: 
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Using mRkB  , Eq. (4-5) can be rewritten as  
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Eq. (4-6) identifies to the equation employed by Young [5]. Consequently Eqs. (4-4), (4-5) and (4-6) are 
the same equation. Note that these models can only be used for condensation under Hertz-Knudsen's law. 
Condensation in wet-steam flows may not follow Hertz-Knudsen's law. We know Gyarmathy's model [17] 
and Kantrowitz's modification [18] for such dense condensation. The detail for nucleation and 
condensation are explained in books and reviews [19] - [21]. 
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Chapter D Modeling for Condensate Flows  
 
1. Equations for moist-air flows  

Actual atmosphere includes a finite amount of water vapor. It plays an important role in weather 
conditions and in the earth's various environments. Water vapor occasionally condenses over aircrafts 
which is cruising in a high humid condition. Condensation of water vapor results in a change of pressure 
distributions on the wing surface and it may reduce the lift/drag ratio.  

A typical onset of condensation over a wing in atmospheric wind tunnel conditions is started by a 
rapid flow expansion in supersonic region. Then, both the local pressure of water vapor pv and the local 
saturation pressure of water vapor ps decrease. Since ps soon reaches a lower value than pv according to 
the decrease of local temperature, the supersaturation ratio S (the relative humidity  is  = S x 100), 
defined by the ratio of pv and ps, increases. The ratio S may soon go beyond the saturation ratio S =1 
through the inlet of the wind tunnel, and it reaches S »1 rapidly over the wing without condensation. A 
huge amount of nuclei is produced from pure water vapor at such a sufficiently high-supersaturated 
condition. 

On the other hand, the phase change in atmospheric flight conditions may be generally dominated by a 
heterogeneous nucleation of water vapor, because small particulates, such as soot or aerosols may behave 
as a nucleus of condensation.  

Two-dimensional transonic flows of moist air over an airfoil in atmospheric wind tunnel conditions 
have been experimentally and numerically studied by Schnerr and Dohrmann [1][2]. The experimental 
Schlieren photographs present a condensation shock associated with the heat release of water ahead of an 
intrinsic shock wave. Our group presented a numerical simulation of three-dimensional transonic viscous 
flows over ONERA M6 wing assuming atmospheric wind tunnel conditions [3] and those flows over a 
delta wing assuming atmospheric flight condition [4]. Comparison of results obtained assuming 
atmospheric wind tunnel and flight conditions was also reported in our previous paper [5]. 

We developed the fundamental equations for simulating three-dimensional compressible viscous flows 
of moist-air in general curvilinear coordinates. Flows are supposed to be a homogeneous fluid without any 
slip between air and water droplets assuming that condensed water droplets are smaller than m1  and 
the mass fraction   is less than 10%.  

These equations are written with SST turbulence model [6] as follows: 
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where  , v ,   and n  are the total density of moist-air, density of water vapor, mass fraction of 

condensed water droplets and the number density of water droplets per unit mass. k  and   are the 
turbulent kinetic energy and the dissipation rate. cΓ  and I  in source term S  are the mass generation 

rate due to condensation which was basically the same with that at Chapter C, Eq. (2-11) and the 
homogeneous nucleation rate [7] [Chap. C, Eq. (3-2)]. kj and j  are the diffusion terms for SST 
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model, and kS and S are the source term. 

Our group derived the following approximate equation of state for moist air considering the release of 
latent heat:  

   
   m

mpm

m
m he

RC

R
TRp 02/

1

1
1 


 



 uu                 (1-2) 

where mh0 , mR  and pmC  are the heat of formation, specific heat ratio and the isobaric specific heat for 

moist air. These values are obtained from linear combination between those of gas and liquid. 
  
2. Numerical method 

FDS derived as Eq. (3-8) in Chapter B is basically employed for discretizing Eq. (1-1) with Compact 
MUSCL [Chap. B, Eq.(5-1)] for convection term and the second-order central difference is applied to 
viscous term.  

The numerical flux   2/1iF  for iF  defined at the interface between the control volume  and 1  

in each coordinate  3,2,1 ii  can be written by FVS form as 
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where LQ and RQ  are the primitive vectors extrapolated by the Compact MUSCL from left and right 

directions. FVS form for   M
i QA 2/12/1 



 is given in general curvilinear coordinates by  
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iig  are the metrics ( ii   ). Upper subscript M is replaced by L  and R . iL  and i  are the matrices 

composed of eigenvectors and characteristic speeds (eigenvalues). 
ia  and  

ib are defined by 
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where 
ij  5,4,1j  are calculated from 

    2 ijijij                                           (2-4) 

ij  5,4,1j  are the characteristic speeds defined by 
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c  is the speed of sound. iaQ and ibQ  are the sub-vectors given by 
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where the sub-vectors icQ , pQ , imQ  and dQ  are derived as 
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 Eq. (2-1) can be alternatively written by FDS form as  
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Variables with upper bar are obtained by Roe’s averaging.       
LU-SGS method [Chap.B, Eq. (6-8)] is employed for time integration. The following two-step 

processes are executed: 
 
  1*

**

QtGDQQ

QtGRHSQD








                          (2-12) 

where 
       
        1,3,12,11

1,

* 
3,1

* 
2,1

* 
1

* 

 

 




















ki,jki,jk,ji

ki,jki,jk,ji-

QA QA    QA   QG

QA QA    QA   QG
 

1,2,3)=( Q A   may be calculated from Eq. (2-2) by replacing MQ to Q .  

 
3. Equations for wet-steam flows in turbomachinery 

Condensation observed in steam turbines is of quite important in engineering. The phase change may 
be governed by homogeneous nucleation and nonequilibrium process of condensation. The latent heat of 
water is released to surrounding non-condensed vapor, increasing temperature and pressure. It is known 
that condensed water droplets affect the performance of the steam turbine. The blade of the steam turbine 
is occasionally damaged by the erosion due to the interaction with the condensed water droplets. 

Transonic wet-steam flows in a steam turbine cascade channel have been studied by Bakhtar and 
Mohammadi Tochai [8], Moheban and Young [9], and Young [10]. Young [10] calculated two-dimensional 
wet-steam turbine cascade flows by solving Euler equations with a Lagrangian method for integrating the 
growth equation of a water droplet through each streamline.   

Flows are supposed to be a homogeneous fluid without any slip between water vapor and water 
droplets assuming that condensed water droplets are smaller than m1  and the mass fraction   is less 
than 10%. In addition, centrifugal and Coriolis forces are added for three-dimensional flows through 
turbine rotor blade rows. rΩwu   is a relation between flow velocities in rotors (relative velocities) 

)  ( 321 wwww  and those in stators (absolute velocities) )  ( 321 uuuu , where Ω  and r  are the 

vectors of rotational angular velocity and the radius. Eq. (1-1) is transformed to the equations for relative 
velocity field as 
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where   is the total density of wet-steam (note that the equation for v  in Eq. (1-1) is removed). iW  is the 

vectors of contravariant relative velocities. Source terms of momentum equations in 2  and 3  directions 

correspond to centrifugal and Coriolis forces. Eq. (1-2) as EOS is transformed to that for relative velocities as 
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where uv  is tangential velocity of rotation.  

   Numerical methods are basically the same with those for moist-air flows. But, ij  5,4,1j  are the 

characteristic speeds defined using relative contravariant velocities by 
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and velocities in subvectors icQ ， pQ ， imQ and dQ are also replaced by relative velocities as  
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where mjj hww 0
2 2/~   . 

 
Currently our group is developing an in-house code called ‘Numerical Turbine’ which can simulate 

not only wet-steam flows but also moist-air flows considering nonequilibrium condensation through 
multi-stage stator-rotor blade rows in turbomachinery. Recent progresses have been reported at ASME 
Turbo Expo [11]-[15]. 
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Chapter E  Preconditioning Method 
 

1. Preconditioned equations 
Ordinary compressible flow solvers cannot be applied to the calculation for very slow flows such as 

natural convection. One of the reasons is the so-called stiff problem that occurs when flows at a very low 
Mach number are calculated by compressible flow solvers. The relatively high speed of sound compared 
with physical velocities in these flows restricts the Courant-Friedrich-Lewy (CFL) number. Then, we need 
a large number of time-marching iterations to get a solution. Turkel [1], Choi and Merkle [2], and Weiss 
and Smith [3] have developed a preconditioning method that is a numerical approach to overcome the stiff 
problem. A numerical speed of sound has been derived and applied to the pseudo-compressibility method. 
Fundamental equations are smoothly switched to different equations according to the value of the 
numerical speed of sound. The equations are completely the same with the CNS when the value is set to 
the physical speed of sound, while the incompressible Navier-Stokes equations with the 
pseudo-compressibility term and the temperature equation are formed by setting the value to that in a 
same order of local physical velocity. We have employed the same approach for simulating natural 
convective flows.  

CNS modified by the preconditioning method are written in general curvilinear coordinates as  
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where  is the preconditioning matrix. The elements in  are fundamentally the same as those of the 
formulation by Weiss and Smith [3], represented by 
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where   is the preconditioning parameter defined by  

pTr CU   21             (1-3) 

  peh   and TT   . TT /   if ideal gas is taken into account. rU is a switching 

parameter. If rU  equals the physical speed of sound,   is to be zero and the equations are reduced to 

CNS. Q̂ is the vector of unknown primitive variables defined by T
   Tu  up   uQ ] [    ˆ

321 . 

 
2. Preconditioned flux-vector splitting form [4]  

The numerical flux   2/1iF  for iF in Eq. (1-1) defined at the interface between the control volume 

and 1  in each coordinate  3,2,1ii  can be written by FVS form as 
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//i/i/i/i Q̂ÂQ̂ÂFFF 21212121212121  











               (2-1) 


iÂ  are the preconditioned Jacobian matrices composed of only positive or negative characteristic speeds. 
LQ̂ and RQ̂  are the unknown vectors extrapolated by Compact MUSCL from left and right directions. 

The preconditioned FVS (PFVS) form [4] for   M
//i Q̂Â 2121  

 is derived as  
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iL  and i  are the matrices composed of preconditioned eigenvectors and preconditioned characteristic 

speeds (eigenvalues). 
ia̂  and  

ib̂ are defined by 
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where 
ij̂  5,4,1j  and  i are calculated by  

    2 ijijij
ˆˆˆ                                     (2-4) 

  iiiiri gcUU ˆ2/1 2             (2-5) 

ij̂  5,4,1j  are the preconditioned characteristic speeds defined by 
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iĉ  is the numerical speed of sound. It is derived as 

   241 222
riiii UgUĉ                                 (2-7) 

and  pTpr CU   2 , where pp   .  RT/p 1  if ideal gas is assumed. If rU  equals the 

physical speed of sound,  is reduced to unit. Then, the characteristic speeds and the physical speed of 
sound for compressible flows are recovered. 

iaQ̂  and 
ibQ̂  are the sub-vectors derived as 
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M
jq̂ and   1,2,3)](  ˆ[  ˆ

1   jqxU M
jjii   are the j-th element of Q̂  and the contravariant velocities 

extrapolated by Compact MUSCL. icQ and dQ  are sub-vectors given by 
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3. Preconditioned FDS form [4] 

FDS method based on Roe’s approximate Riemann solver [Chap. B, Eq. (3-8)] is employed for 
discretizing convection terms. The numerical flux Eq. (2-1) is rewritten as 
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The FDS term   M
i QA ˆˆ

2/1
 is derived using PFVS form Eq. (2-2) as 
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All the components in Eq. (3-2) are the same with those for FVS form. 
 
4. Preconditioned LU-SGS method [4] 

LU-SGS method [Chap. B, Eq. (6-8)] can be modified to the following preconditioned form:  
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where G  and G  are the functions composed of time derivatives of numerical flux at neighboring 
grid points defined by 
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 3,2,1  ˆˆ iQΔAi
  may be calculated from Eq. (2-2) in which MQ̂  is replaced by Q̂Δ . 

 
As the applications of preconditioning method, we simulated natural convection and that coupled with 

heat conduction in solid [5], those with condensation [4], and very-slow flows of moist-air in a cooled 
pipe [6]. 
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Chapter F  Modeling for Thermophysical Flow 
 
1. Modification of preconditioned equations 

CNS equations with a source term modified by the preconditioning method are written in general 
curvilinear coordinates as  
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where all the terms in Eq. (1-1) except for source term S  is the same with those of Eq. (1-1) in Chapter E. 
Source term includes some additional physics, for example gravitational force toward  yx 2  is taken 

into account as     Tss gugJS 2 000   , where s  and g  are the referenced density 

and the gravitational acceleration.  
   To consider accurate thermophysical properties such for supercritical fluids, not only the variation of properties 
with respect to temperature but also that with respect to pressure should be taken carefully into consideration. The 
preconditioning matrix Γ  is slightly modified [1] to   
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where   peh  . The preconditioning parameter   is also redefined by 
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TT   , ThhT   and phhp  .  

 
2. Thermophysical models 

Substances have their own thermophysical properties. The values are changed according to the values of 
temperature and pressure. The phase is occasionally changed among gas, liquid, and solid. In addition, substances 
become supercritical fluids if the temperature and pressure exceed their critical values. Especially, supercritical 
fluids have anomalous properties near the critical point: maximum peak of isobaric specific heat and that of reaction 
rate; rapid change of solubility, zero surface tension, and so on. These anomalous properties are utilized for the 
decomposition of waste, the fabrication of nanoscale particles, heat exchangers, and so on, by chemical, material 
and mechanical engineers. Eckert et al. [2] reviewed the research works of supercritical fluids in the Nature. 

Ordinary CFD solvers employing the equation of state (EOS) for ideal gas cannot predict actual thermophysical 
values in flows of arbitrary substance. Fortunately, primary thermophysical properties such as density, viscosity and 
thermal conductivity have been mathematically modelled by chemical engineers for most of substances. For 
examples, we know several EOSs based on cubic-type and virial-type models. Cubic-type EOS is formed by a 
cubic equation based on the van der Waals EOS. The form is not so complicated as compared with that of 
virial-type EOS. We simulated thermal convection of supercritical carbon dioxide [3] using our preconditioning 
method coupled with Peng-Robinson EOS (P-R EOS) [4] which is a modified EOS from the van der Waals EOS. 
The obtained results indicated that the solution is essentially different from ordinary solutions obtained by assuming 
an ideal gas. P-R EOS could be applied to the carbon dioxide reasonably. However, P-R EOS could not predict 
water accurately. It suggests that cubic-type EOS cannot be used as a general-purpose EOS for arbitrary substance.    

Virial-type EOS is formed by a polynomial equation. Although the computational cost is relatively higher than 
that of cubic-type EOS, the accuracy is sufficiently preserved even when the temperature and pressure are changed 
between two phases.  For example, a virial-type EOS for carbon dioxide was standardized in IUPAC [5] defined as 
a polynomial equation by 
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where */   , TT /*  and actually ][kg/m 468 3*   and [K]  21304.T *  for carbon dioxide．

Parameters ija and iJ  are referred from IUPAC [5]. Using Eq. (2-1), the isobaric and isometric specific heats are 

obtained from the following equations: 
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where ideal
vC  is the isometric specific heat for ideal gas. 

EOS for water was also defined in IAPWS IF97 [6].  Density is obtained by the virial-type EOS as a function 
of temperature and pressure. Not only the specific heats but also the related partial derivatives can be derived from 
the EOS.  

As other properties, the molecular viscosity   and thermal conductivity   were further modeled using a 
polynomial equation as 
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where 2/33
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i ix e . The coefficients ijb , ijc , ijd  and ije were defined in IUPAC. 

 
We know some databases for thermophysical properties such as that developed by NIST. Currently we use the 

thermophysical database PROPATH [7] developed by Kyushu University: a database of thermophysical properties 
for 48 substances. Most of the mathematical models for EOS, molecular viscosity, thermal conductivity, isobaric 
and isometric specific heats and so on, are programmed as a polynomial equation which has been standardized by 
an authorized conference or society. Since the anomalous property is quite deeply related to the flow feature near the 
critical point, the accurate evaluation is absolutely necessary for simulating supercritical-fluid flows. Our 
preconditioning method was fully coupled with PROPATH. Thermophysical properties are programmed as 
functions for each substance in PROPATH. The set of the functions are contained in a same file as the library file for 
each substance. The names of the functions are all the same in the different libraries even if the substance is different. 
This feature enables us to change the substance quite easily. Only if the library file is replaced to the other, we can 
simulate thermophysical flows of different substance, such as carbon dioxide, water, nitrogen, hydrogen, methane, 
and so on. 

Currently we are developing another in-house code called ‘Supercritical-fluids Simulator (SFS)’ which is based 
on such preconditioning method and PROPATH for simulating not only very slow flows but also high-speed flows 
beyond supersonic of gas, liquid, and supercritical fluid considering the phase change. As one of the final 
destinations of SFS, we simulated Rapid Expansion of Supercritical Solution (RESS) [8] process using SFS [9] [10]. 
We seamlessly simulated supercritical CO2 (SCO2 ) entering the nozzle, SCO2 crossing the critical 
pressure in the nozzle, supersonic CO2 gas expanding into the expansion chamber, shocks and CO2 
condensation in the chamber, nucleation, condensation, and coagulation of polymer particles. Finally all 
physics expected in RESS could be totally simulated [10].  
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