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Chapter A Fundamental Equations for Fluid Dynamics

1. Compressible Navier-Stokes Equations
Let me start from Compressible Navier-Stokes equations (CNS) using vector description as follows:

p,+V-(ou)=0 (1-1)
(pu)t+V-puu+Vp:V-H (1-2)
et+V-(e+p)u:V-(H-u)—V-q (1-3)

where p, u, p, I, e and q are the density, velocity vector, pressure, viscous stress tensor, total
internal energy per unit volume, and the vector of heat flux. ¢ is the time and the subscription 7 means
the partial derivation with respect to time. First, second, and third equations are respectively the mass
conservation law, momentum conservation law, and the energy conservation law.

These equations can be rewritten using tensor description:
op O

—+—I(pu,)=0 1-4
o o ) (1-4)
0 0 0
—\ou. J+—\puu. +6.p)=—-Ir, 1-5
at (pul) axi (pul J l/p) axi ( !l) ( )
e 0O 0 oT
—+—\le+ph |=—|Tu, +tK— 1-6
s Sl bl 2 s w2 06
where (x,,x,,x,)=(x,y,z) and (u,,u,,u;)=(u,v,w) for three dimensions in space. Originally for
3
example, ai(pu,)=zai(pu,) T and K are the temperature and heat conductivity coefficient. 7,
Xi i=1 OX;
is the viscous stress tensor and defined by
Ou, Ou;| 2 . ou
To=ul | —+—L|-=8,—%| (i,j=123 1-7
! ﬂH@x(, axl.] 37 axk] (g ) (-7

where 4 and o; are the molecular viscosity and Kronecker’s delta. Second equation Eq. (1-5) is

composed of three momentum equations along x,y,z directions if j =1,2,3.
CNS is not a closed system itself because the pressure p as unknown variable is still unresolved.
Assuming ideal gas, CNS can be closed by the equation of state:
p=pRT =(y —1)e— pun/2)=(y —1)e- puu,/2) (1-8)
where R and y are the specific gas constant and specific heat ratio (y =1.4).
CNS can be written using tensor description in vector form:

0Q OF, OF,
00 O O (i2103) (1-9)
ot Ox, Ox,

o] I pU, | I 0 |

pY, puyt; + 0, p Tii

Q=|pu, |, F =] puyu;+6,p|, F,;= Tai
pu; pusit; + 0y, p T3
| e | i (e+p)u, ] | T u, +x0T/OX, |

where O, F, and F, are the vectors of unknown variables, convection and pressure terms (convection

flux), and the diffusion terms (diffusion flux). CNS in two dimensions may be easily derived from that
of three dimensions as



p pu; 0

0- PUy ’ F= puu; + 0y, p ’ F, = Ty
P, Pyl + Oy, p Ty
e (e+p, T, +Kk0T/0x,
CNS may be usually described by the following vector form:
00 OF o0G OH OF, 0G, O0OH,
=y (1-10)
o0 ox oy o0z OoOx oy Oz
P Copu | v ] Copw ]
pu puu+ p puv puw
O=|pv|, F=| pwu |, G=|pw+p|, H=| pw
pw pwu PWY pwwW+ p
| e | _(e+p)u_ _(e+p)v_ _(e+p)w_
i 0 ] [ 0 ] - 0 i
T, T, T,
F = T, , G, = T, , H = T,
zx sz (=
T U +ryxv+rzxw+K8T/8x rx),u+ry),v+rzyw+K6T/8y T UFT v 7. w+Kk0T/0z

The viscous stresses are defined by

(&t 8uj 2(0u oOv ow
T =M|—+—|-——| —+—+—
ox ox) 3\ox oy oz

ou 8VJ
T, =M + =7,

oy ox
7= 8_u+8_wj —
= H Oz O zx

(1-11)

ov ov) 2(ou ov ow

To=u|—+— |- —+—+—

T\ oy) 3\ox oy oz
dy , Ow

T o=u =—+—|=1

n=H 0z Oy i

(ﬁw ﬁwj 2(0u ov ow
o=y —F— |- —+—+—
oz o0z) 3\ox oy oz

2. Non-dimensionalization on CNS

Non-dimensionalizing CNS may be valuable for variables defined in CNS with different units and
orders of magnitude, especially if we simulate a multiphysics problem with CNS. Multiphysics
computational fluid dynamics (MCFD) is a research field which solves flows with additional physics such
as reaction, multiphase, the phase change, and external forces due to additional physics. Such external
forces are modeled as a source term and added to CNS. Since such source terms generally have
complicated units, the fully non-dimensionalization might be impossible. The following
non-dimensionalization process may help the addition of the multiphysics source terms to already
non-dimensionalized CNS. Then we add source terms s (j=1,---,5) to CNS as

op O

9 +g(pu,~)=s, (2-1)
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0 0 0
a j)+a(/0u,-u,-+5,-,-p)=a(f,-j)+sl+j (2-2)
ce 0O oT
—+—|le+ T.u, +K +s 2-3
o Lles bl 2w o x L o 2
First, all variables are non-dimensionalized as follows:

X, _
)_C/ :_f, t:L, ﬁzi

L tref poo
_u; _ e _ p
0=y e e P (2-4)
Tzl, ﬁ:i, ,?zﬁ

The upper bar indicates the non-dimensionalized variable. L [m], p,[kg/m’] and V, [m/s] are the
reference values of length, density and velocity. ¢, is a reference time and can be derived from the other
variables as 7, =L/V,. T,, u, and k, are the reference values of temperature, molecular

viscosity coefficient, and heat conductivity coefficient. These values are explained later.
Next Egs. (2-1)-(2-3) are non-dimensionalized using the non-dimensionalized variables. Eq. (2-1) as
the mass conservation law with a source term is non-dimensionalized as follows:

op O B
or + o, ( i)_ S
opp,) 0
- V.
o) " 8(xl.L)('0p°°u 2)=s

&a_p+_p°°V°° i _'):Sl

t,of L &x

op 0 [ L

_+— = 2'5
it m (p17,) A (2-5)

The fourth equation has a final form. The form at the left-hand side (1.h.s.) is all the same with the original
form except for the upper bar, while the source term s, at the right-hand side (r.h.s.) was multiplied by

L/p,V, . The value derived as L/p,V, is quite important one. We have only to know this value if a
dimensional source term s, 1is added to the mass conservation law even if the unit is unknown.
Eq. (2-2) as momentum equations with a source term are also non-dimensionalized as follows:

0 0 0
81‘( j)+a_( iU é‘z'jp):a_xi(fij)—f_slﬁ

(Bo. .. )+ a; L)(ﬁp@m,nw oY) a(j L)[f,j ”@ijﬂw

V. o, V: o _ V. o0 (_
g P i, )= e

olet,,

ox

i i

0 (__ 0 (— _ _ 0 (— L
g(pu_, )+ g(p”i”j +3;P ) = p:l;w 7 a_)—cl(fy )"‘ ms L+ (2-6)

Since the Reynolds number is defined by Re=p,V, L/u, , the coefficient of viscous stress term is
reduced to the following equation:

0 (__ 0 (_ _ _ 1 0 ([ L
a_lr(/ouj)"’a_)—cl( uiuj+djp):R_e@_)?i(T”)+msl” (2-7)

i
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The time derivative and the convection term are the same form with the original term except for the upper
bar. 7, isalso derived as the same form:

_ o, 5% ou,
- s s 2-8
ﬂ[(@x ax,) 3% 5% ] 2-8)

Non-dimensionalized process for Eq. (2-3) as the energy conservation law with a source term is as
follows:

3_+_[( +p )= [Tzk”k""{aTJ"'Ss
X,

ot
a(épij) 8 _ B V; k. T._oT
o) oL [(ep T2+ PO °°] AR
pViee pV: 0. 1 wuV>o(__ T _oT
I E"' I g (e +p)”i]: I G_J_Ci[rikuk + G Ka_)_cij"'ss
de __ x,T, _aT L
§+a_ (e+p)u, ] o ( Tyl + 7 g}r PG 8 (2-9)

The coefficient of the heat flux is further transformed using some thermodynamic relations as
kT, c¢,.T,
WV VP
v £
_r=1p,
V. Pr (2-10)

2
C

“(-1p2pr
-
(y —1)M2Pr

where ¢, and Pr are a reference isobaric specific heat and the laminar Prandtl number. Reference

values of speed of sound and the Mach number are c¢.=yP,/p, and M, =V, /c, . Finally
non-dimensionalized form for energy conservation law with a source term is given by

oe K oT L
—+— U+ ——————— [+ ———=5 2-11
of X, ( +pJn]= Re 0%, [ “(y-1)M2Pr ay‘cl} p V2 -11)
Non-dimensionalized CNS with source terms are summarized as follows (upper bar was removed):
F, _ 1 OF,
Q.9 O g (i=1,2)3) (2-12)
ot 8x Re 8x
_ - _ _ 0 7 _ -
p pu; 5
pY, puyit; + 0y p o I $,/V.
O=|pu, | F,=|puu; +3,p|s F,= fai s S=——ro| 5[V,
75 PV
PUs pusu; + 0y, p ¥ s4/V.
| € | L (e—l—p)u,. i I K%k (}/—l)MiPl’axi_ _Ss/Voo_

3. General Curvilinear Coordinates
We employ the general curvilinear coordinates (5,77,4’ ) to solve CNS along a body fitted coordinates.
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(5,77,4’ ) are the functions of (x, y,z) given by
=& y.z) n=nlx.y.z), £ =¢(xy.2) (3-1)
The total differentials of (£,7,) and (x,y,z) are defined by
dé=¢&dx+&dy+¢E.dz
dn=ndx+ndy+n.dz (3-2)
df=¢.dx+¢ dy+¢.dz
dx=xd&+x,dn+x,dg
dy=ydé+ydn+ydg (3-3)
dz=z d&+z,dn+z.dd
The metrics of (5 1,6 ) are derived from these relations as follows:
S Sy S| X X, X
. 1n, N |\=|\YVe Yy V¢
S &y S| |z oz oz

-1

(3-4)
1 YnFe = V2, _(xnz§_x§zn) XpYe =X Vy
T TVET YR YT R T xgyg—xgyf)
YeZy = VyZe Xz, T X2 XeVy =Xy Ve
where J is Jacobian for transformation and defined by
. o, v,7) i Ye Xy X
Aeng) [F 0 (3-5)
Ze A %

= x:(yn2¢ - yczn)_ Xy (J’;Z§ - y§z§)+x;(y§z,7 - yﬂzé)
CNS are transformed to general curvilinear coordinates using the metrics and the Jacobian. The following
original form of CNS is introduced again:
00 oF oG oH oF, 0G, oH
=t —t—+—="4 -
o oOx oy 0z Ox Oy 0z
The viscous terms are combined with the convection terms as follows:
30 AF-F) olG-G,)  oi-1,)
ot ox oy 0z

Space derivative terms are redefined using ', G and H by

oQ oF oG aH
—+—+—+—=0,+F+G,+H. =0 3-8
ot Ox ay 0z =0 S

The space derivatives of fluxes /', G and H are transformed to (5,77,{ ) coordinates as follows:
O+&F.+nF +C F,+5G.+nG, +{ G+EH +n.H, +{ . H=0 (3-9)

- (3-6)

=0 (3-7)

+lJ(§xF+§yG+§ZH)L Fl(UE), +Un), +(<.),]
+ . F+n,G+nH G[J§ +(/n, ) +(7¢, ) ] (3-10)
+leF+cGcH L ~H[VE), +(Un.), + (). ]=0

The metric terms in the bracket at the second term for each coordinate are disappeared, for example, as the
following manner:



(&), +(Un,), +(US,),

= (ynz¢ - y§ZU)§ - (ygzg _ygzg)n + (yézﬂ _y77Z§)§ =0

Finally CNS in general curvilinear coordinates are obtained as
O +F.+G,+H, =0

0=JO

F=JEF+EG+EH)

G =J(n,F +n,G+n.H)

H=J(¢ F+{,G+{.H)
pU

poulU+¢& p— (fxTxx +&,7, + ngzx)

F=J|pU+ép—(er, +&7, +ér,)
pU+Ep—(er, +&r, +Ex)
| (et pl-(6o, +&0,+E0.) |
L o -
puV+n.p-— (nxfxx +1,7, + nzfzx)

G=J| pV+n,p-(nr, +n,7, +1.7,)

pwV +1.p = (nzfyz +1,7,. + n.c.)
| (e+pV -(n,0,+n,0,+n.0.)

W |
W+ p=¢ 7, +¢ 7, +C )
H=J|pW+p-(Ca, +8yr, + 6,
pwl +¢p-(¢r.+¢ra+ )

where U, V' and W are the contravariant velocities defined by
U=Su+Sv+iw

V=nu+nyv+nw
W:é'xu+é’yv+§zw

and o, o, and o, are sets of diffusion terms:

}/'
o, =1, u+7, v+, w+Kk0T/ox
o, =t u+7,v+7 w+K0T/0y

o, =T u+7, v+7, w+kT/0z

CNS in general curvilinear coordinates can be written using tensor description as follows:

QAZ+@:%
o, 0¢,

| (e+pW-(¢o,+¢,0,+¢0.) |

(3-11)

(3-12)

(3-13)

(3-14)

(3-15)



_ U _
[ p ] O
pouwU, + p
ox,
Pu,
R n o0&, o0&,
0=J0=J|\pu, |, F=J2F=J pwU +_—="p|
ox; - ox,
P 0&
e p”sUi"'a_é:lp
L € | ,
(e+p)Ui |
_ 0 _
7,
ﬁvi :_]%ij :J% Th
ij ij 75
Tl tK——
i Y]

4. Conservation and Non-conservation Forms
CNS is basically composed of conservation laws for mass, momentum and energy. The conservation
law means that fundamental equations satisfy also the conservation of mass. Mass conservation law
proves the conservation of mass itself. Momentum and energy equations implicitly include the mass
conservation law in them. Let me divide conservation laws to the conservation part and the
non-conservation part. After one dimensionalizing Eq. (1-10) with releasing the viscous terms, the
following equations are obtained as governing equations for one-dimensional inviscid flows called Euler
equations:
Qt + Er =0 (4'1)

p pu
O=|pu|, F=|pu’+p

e (e+p)u

Momentum equations are originally formed as the sum of mass conservation law and a non-conservative
momentum equation as

ulp, +(ou), }+ p{ut +uu, + %} =0 (4-2)

The energy equations implicitly include not only mass conservation law but also non-conservative
momentum equations. This equation is originally formed as the sum among the mass conservation law,
the non-conservative momentum equation and an equation for specific internal energy as

i{pt +(pu)x}+pu{ut ‘f‘l/ll/lx +%}+p{€t +ugx +%ux} :O (4_2)

where ¢ is the specific internal energy per unit volume and e = pg + pu’ / 2.
Consequently the following matrix description identified to the conservative Euler equations:

1o o  p+(ou),
u p O u+uu +p. /p =0 (4-3)
e/p pu pe& tue +pu/p
Equations in the vector in Eq. (4-3) correspond to non-conservative Euler equations.



Chapter B Fundamental of Computational Fluid Dynamics (CFD)

1. Euler Equations and Characteristic Speeds

Since compressible flows conditionally generate shock waves when the speed exceeds the speed of
sound, accurately capturing shocks is crucial for compressible flow simulation. A number of the so-called
shock capturing methods have been developed by applied mathematicians and CFD research scientists.
Most of the methods were based on the theory of characteristics which is a theory for hyperbolic system.
The theory can be applied to the system with arbitrary number of independent variables, but actually the
theory for two independent variables is still standard for shock capturing methods. This theory has been
applied to multi-dimensional compressible flows governed by two- or three-dimensional Navier-Stokes
equations. Then the equations have more than two independent variables such as (t,x, y,z). It suggests

that the theory of characteristics for two independent variables is not exact for multi-dimensional
Navier-Stokes equations. In addition, Navier-Stokes equations are not a hyperbolic system. We should
keep in mind that most of current CFD methods for compressible flows employ shock capturing methods
based on the theory for two independent variables.

The theory of characteristics for two independent variables is exact in one-dimensional Euler
equations.

One-dimensional Euler equations are written in vector form:

Qt + Fj\c = O (1_1)
P pu
O=|\pu|, F=|pu’+p (1-2)
e (e+ p)u
Another vector form is also given by
Q,+40, =0 (1-3)
where 4 is the Jacobian matrix defined by 4 = 0F /0Q and derived as the following matrix:
0 1 0
A=| -(B-yk*/2 (3-7)u y—1 (1-4)

(r=1)u’ —pe/p ye/p=3(r-1)u’/2 yu
Note that pu should be defined as one unknown variable when the elements of 4 are derived.
Next relation is obtained when AQ is calculated.
F=A40 (1-5)
Consequently, we can obtain the following relations called ‘Euler’s homogeneity relation’ from Egs. (1-1)
and (1-3):
F, =40, =(40), (1-6)
Eq. (1-6) indicates that A is independent to partial derivatives. This property is quite important for

applying the theory of characteristics to Euler equations.
Eq. (1-3) is transformed from the conservation form to a non-conservation form as

0,+40, =0 (1-7)

where Q is the vector of unknown variables in non-conservation form (i.e., primitive variables) and 4
is the Jabobian matrix in non-conservation form as follows:

yo, u p 0
O=|u|, A=|0 u 1/p (1-8)
p 0 pc* u

where ¢ is the speed of sound. Eq. (1-7) can be derived by the multiplication of a matrix N = 8@/ oQ
10



from the left on Eq. (1-3), where N is the matrix for transformation from conservation form to
non-conservation form. Then we obtain a relation A4 = NAN ™.
The eigenvalues of A are derived from the characteristic equation:

- a1|=0 (1-9)

where A indicates the eigenvalues. We can obtain three different real eigenvalues: 4, =u, A, =u+c
and A, =u—c. Since the set of equations is hyperbolic when all eigenvalues of the characteristic
equation are real, the set of one-dimensional Euler equations is proved as a hyperbolic system.

The eigenvalue is called ‘characteristic speed’ in CFD research field. The matrix 4 — A/ has three
row vectors or three column vectors, and the orthogonal vectors (i.e. eigenvectors) are exist as

(A= 41)=0 (1-10)
where [* (k:1,2,3) identifies to left eigenvectors. From Eq. (1-10), we can define a matrix A for

eigenvalues and a matrix L composed of left eigenvectors:

u 1 0 -1/
A=| u+c , L=|0 1 1/pc (1-11)
u—c 01 —1/pc

and can derive a relation A=L'AL. Because A=L'ALand A= NAN" , the following relation can
be obtained:

A=N"L'ALN (1-12)

2. Flux Vector Splitting (FVS)
Eq. (1-1) is discretized by Finite Difference Method (FDM). First the convection flux vector F in Eq.
(1.2) is discretized here as

0, =~(Fjp = F )/ Ax @-1)
where F,,, are the numerical flux vectors defined at the intermediate grid point j+1/2 between grid
points j and j+1; that at j—1/2 between j—1 and ;. Ax is the grid interval with a constant
value.

Steger and Warming [1] splits Fto F"and F~ according to the signs of characteristic speed and
redefined by

F=F"+F" (2-2)
where F* are obtained using Eq. (1-12) as
F*=A"0=N"L"'A*LNQ (2-3)
A" are the matrices composed of only positive and negative eigenvalues defined by
A0 0
A= 0 A4 O (2-4)
0 0 A

The eigenvalues are calculated from A; = (lk * |2k |)/ 2 (k=12,3).

The flux vectors F* are finally derived as the sum of three subvectors:

1 1 1

Fizy—_lp u L ure B+ u—c |2 (2-5)
2 2y /4
u/2 h+cu h—cu

where # is the total enthalpy and % = (e + p)/ p . The flux vectors F',,, are up-winded by the signs of
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characteristic speed in Eq. (2-5). For example, F;,,, can be obtained at the first-order accuracy as the
following relation when all characteristic speeds are positive (i.e. supersonic flow)

Fiap =F =F, (2-6)
Because the gradient of Eq. (2-5) is discontinuous at Mach number M =-1,0,1, Steger-Warming
method cannot be used at subsonic region straightly. van Leer [2] proposed another flux vectors which are
smoothly connected at the Mach numbers. But, too dissipative in boundary layers was addressed both for
Steger-Warming’s method and van Leer’s method. Although Steger-Warming’s method has such

restriction, this method is exact at supersonic region for one-dimensional Euler equations. Note that FVS
methods are not exact for multi-dimensional flows or viscous flows (i.e. Navier-Stokes equations).

3. Flux Difference Splitting (FDS)
Roe [3] proposed the FDS algorithm. FDS splits not the flux vectors but the difference of flux vectors.

The difference AF is defined by the sum of flux vectors 4“AQ as
AF = A"AQ + A AQ (3-1)
where AQ is the difference of Q and A* are Jacobian matrices composed of elements obtained from

only positive and negative eigenvalues.
Eq. (2-1) is rewritten using Eq. (3-1) as

0, =—{480), ,,+(4720),,,, }/Ax (3-2)
where AQ,,, =0,,, -0, and A*AQ are obtained using Eq. (2-3) as
AAQ = L'AN°LAQ
=L'AAW (3-3)
= Z A Aw, "
k

L=LN is the matrix composed of conservative left eigenvectors and AW = (Awl, Aw,, Aw3) are the

vector of characteristic variables; r* (k = 1,2,3) is the conservative right eigenvectors. In Roe’s method,
Ai

s, are calculated only using Q;and Q),,, and a special averaging called Roe’s averaging is
conducted to satisfy the conservation and the nonlinearity. Then the averaged values p, u, h and ¢

are defined by
p= PiaP; = Rj+1/2pj

7= (u\/;)jﬂ +(u\/;)j _ Rj+1/2uj+1 tu,;
\/pj+1 T/P; R, +1 (3-4)

- (h\/; )j+1 + (h\/; )j _ Rl th

B =

\/ P+ \//T, R +1
& =(y-1)\h-u*/2)

Characteristic speeds and the right eigenvectors are calculated using Eq. (3-4) as

A =i, lL,=u+c, l=u—c

1 T N
Felw |, P=Llave |, =L u-c G-5)
) | ’ |
72 “Vh+euw V7w

and characteristic values Aw, (k =1,2,3) are defined by

12



Aw, =Ap —Ap/c*
Aw, = Au + Ap/p_c2 (3-6)
Aw, = Au—Ap/ pc’

where A()=(),,,~(),
Roe’s FDS approximates the flux vector using averaged variables as

0 =- {Z(Z:Awk’jk )1—1/2 + Z(’T;Awk’?k )./H/Z }/Ax (3-7)

k
where 77 = (7 £|3,])/2.

Roe’s FDS guarantees the space accuracy even in boundary layers. However, this method has a
problem in which capturing detached bow shock in supersonic flow is inaccurate. Liou [4] proposed
Advection Upstream Splitting Method (AUSM) to improve the inaccuracy. But this method also has
another trouble in the method.

The Riemann Problem is known as a local one-dimensional shock tube problem. Roe’s FDS belongs to
the so-called approximate Riemann solver. A local cell is defined at the local region between the grid
points j—1/2 and j+1/2. The Riemann problem is solved at the interface between neighboring cells.

Primitive values obtained from the left side and the right side are defined as Q , and QR at the interface

j+1/2 oftwo cells. Then the numerical flux of Roe’s method can be redefined using Q , and QR by
Fiap = {F(QL )-I-F(QR )}/2 + ‘A(QL, O )‘(QR -0, )/2

~{F(0, }F (0, )}/2 + ;\Zk\ Aw, 7 /2 (3-8)
Also this approach can be applied to FVS as
Frun-F(0,)+F7(0,) (39)

4. MUSCL Extrapolation
One of popular approaches obtaining the primitive variables QL and QR is Monotone

Upstream-centered Schemes for Conservation Laws (MUSCL) [5]. These variables are calculated from
the following interpolation:

~ ~ l-a ~ l+a  ~
QL = Qj +TAQJ>1/2 +TAQ/'+1/2
(4-1)
~ o~ l-a , ~ l+a  ~
QR = Qj+1 _TAQJ+3/2 _TAQJ‘H/Z

Eq. (4-1) results in a second-order upwind and a third-order biased upwind if ¢=-1 and «=1/3. We

proposed a fourth-order biased upwind version called Compact MUSCL [6] as follows:

I l— ~
0, :Qj +EAQ,>1/2 +§AQ/+1/2

~ ] — ~ ] — ~
QR = Q_/+1 _gAQ_j+3/2 _EAQ_/H/z

— o~ ~ 1 .~
AQJH/z = AQ_/+1/2 - EA3Q_/+1/2 (4-2)

AQJH/Z - Q]’+1 B Qj
KO,y =20, 11, =2A0,.,,, + A0,
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5. TVD and Limiter Function

Robustness with high accuracy is required for Riemann solvers to capture shocks accurately and stably.
General high-order finite differences may induce a numerical oscillation at the shock location, while
first-order upwind difference keeps monotonicity even at the shock, resulting in no oscillation. von
Neumann’s stability analysis can find the stable condition for a linear scalar equation. TVD (Total
Variation Diminishing) is a stability method for a nonlinear scalar equation proposed by Harten [7].
Numerical schemes satisfying the TVD condition are called TVD scheme. In most of TVD schemes, a
high-order accurate method is basically employed and the accuracy is reduced to first order only near the
shock, because the first-order upwind difference unconditionally satisfies the TVD condition. Several
limiter functions such as Minmod limiter [7], van Leer’s limiter [8], Roe’s Superbee limiter [9], and
Chakravarthy-Osher’s limiter [ 10] for switching the accuracy have been proposed.

Compact MUSCL employs two-step minmod limiters:

I U e

0,=0,+ Q!+ A"

6 3
~ 1+~ 1+~
O = Q_/+1 ——A Q_/+1 -——A Q_/+1
6 3

KQ; = minmod(ZQj_l/z,blZQj+l/2)

Zéf = minmod(ZQ /25 bIZQ v )

o ~ 1 i~

AQ_/+1/2 = AQ,'+1/2 _EA3Q,'+1/2 (5-1)

AQj+1/2 = Qj+l _Qj

A3é_/+1/2 = AQL - 2’AQM + AQR

AQ, = miand(Aijl/zabzAQm/zabzAQj+3/2)

AQ,, = minmod(AQ,., ,,5,A0,.,,,5,A0, )

AQy = miand(AQj+3/2’bZAQj—l/Z’bZAQjH/Z)
where 1<b <4, b, =2 and the minmod function is defined by

minmod(a, , - -, a, ) =sign(a, )maX{O, rninqa1 ,sign(a, ) a,, - sign(a, ) a, )} (5-2)

6. Time Integration
Eq. (2-1) can be solved by the time-marching method. The simplest method is called Euler Forward
Method defined by
QnJr1 — Qn _ Fjlil/z B an—l/z
= (6-1)
At Ax

where n and Ar are the time step and the time interval. Q

n+l

is the unknown vector updated from all
known values at »n time step in first-order accuracy as

n+ n At n n
0 = 0 _E( j+1/2 _ijl/z) (6-2)

n+l

The time-marching method in which Q
the explicit method. The time interval A¢ is limited by CFL (Courant-Friedrichs-Lewy) number defined
by cAt/Ax,where ¢ isa convection speed. This number should be CFL <1 for the explicit methods to
keep the linear stability, otherwise solution may be diverged. To remove the limitation, the implicit
methods in which Q""'is integrated using the values at the same n+1 time step have been proposed.
Then, the inversion of a matrix is basically solved.

is obtained from only known values at »n time step is called
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Approximate factorization (AF) method [11] was one of typical implicit methods ever used around
until 1990. Now here two-dimensional Euler equations are defined by

Q,+0F,Jox, = 0, + 4,00,/0x, =0 (i=1,2) (6-3)
Then, AF method applied to Eq. (6-3) is derived as the following form:
(1 +6nt0 A, /ox, NI +6Atd A, /0x,)AQ" = ~At OF" |ox, = RHS (6-4)

where € =1 for fully implicit method and @ =1/2 for Crank-Nicholson method. Twice inversions of a
block diagonal matrix should be solved for the time integration in Eq. (6-4). This equation can be further
derived using Eq. (2-3) as follows [12]:

{1+on(Av, + A LT+ 0n(AV, + A, I NAQ" = TN RHS (6-5)
where V, and A, are the forward and backward difference operators. Since two inversions of a scalar
diagonal matrix are only solved in Eq. (6-5), the computational cost can be significantly reduced from that
for Eq. (6-4).

We proposed a maximum second-order accurate AF method [13] based on Crank-Nicholson method
and Newton iteration given by
r+on(n;v, + A (L T+ ondas v, + Aa, ' (LN) Q" = (LN)" RHS™  (6-6)
where
AQ" = Qm+l —Q"
RHS" =-(0" - 0")- At (0" /ox, +0F" ox, ) 2
m is the Newton iteration. Q" =Q" if m=0 and Q" — Q" (AQ’" — O) if m—o. Then, a

solution with maximum second-order in time can be obtained.

Another popular implicit method is LU-SGS (Lower-upper Symmetric Gauss-Seidel) method [14].
Currently many CFD methods may be coupled with LU-SGS. This method is defined by the following
two-step process for Eq. (6-3):

ol ). e
A0 =0 - D onel4 ), +(45),,, AQ" ©9

where (Aki )l.’j (k = 1,2) are the Jacobian matrices spht by the sign of characteristic speed in x, directions

(6-7)

at the grid point (i , j). These matrices are approximately calculated from

(45), ={(4.),, (), 1)/2 (6-9)
()., is the spectral radius of (4,), ; obtained by
(1), = rmax|(4,), ] (6-10)

a>1 and (4, ),.’l. are the characteristic speeds of (4, ),-,,- .

The operator D is calculated from the following algebraic equation:
D=16A1Y (1), (6-11)
k

No matrix inversion is executed for LU-SGS even though LU-SGS is an implicit method. A forward and a
backward sweeps for solving Eq. (6-8) on the so-called hyper plane which is a skew line (plane) across
grid points are only required. Conclusively LU-SGS method may accept a large CFL number exceeding
one.

We also apply the Crank-Nicholson method and the Newton iteration to Eq. (6-8). The maximum
second-order accurate LU-SGS method [15] is given by

D"AQ* = RHS" — 0Az{(A+)Cl ; (A*)“, 1}AQ*’"

20" =20 - (DY onelar ), + (45 )7 " o
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Chapter C Modeling for Condensation

1. General Dynamic Equation (GDE) [1]
GDE governing the nucleation and the growth of small particle; the coagulation due to Brownian
motion is defined by

g—{=15(v—v*)+fmg (1-1)

where f is a distribution function of particles with respect to the time 7, space x; and the volume v

for a small sphere particle with radiusr, i.e. f = f (v,xj,t). L.his. of Eq. (1-1) is expanded to the

Df _of o(ov.\, 0 _
E_ﬁt—'_av(@tfj—'_axj(ujf) (1-2)

where u; (j=12,3) are the particle velocities in x ; (j=12,3) directions. The first term at r.h.s. in Eq.

following equation:

(1-1) is a function composed of nucleation rate [/, Dirac’s delta function, volume v and a particle
volume V' with the critical radius »*. The second term f

coag

is for coagulation due to Brownian

motion.

2. Method of Moments (MoM) [2]
MoM has been used for simplifying GDE. Eq. (1-1) multiplied by v‘(¢ =1,2,3,---) is integrated
over the volume v as

%U "deJ [ /;}(gjf}d\/+§j[uj.[:v/fdvj=1va/5(v—v*)dv+.[ V S (2-1)

The first term at r.h.s. results in Ijowvié'(v - )dv =Nn".

Defining M, = J.: v' fdv, Eq. (2-1) can be transformed to the following equation:

oM, 0O
ot Ox

j
M, 1iscalled ¢th moment. The second term at r.h.s. in Eq. (2-2) is derived from the second term at Lh.s.

(Mu,)=1v" + 0 I:v“% fdv + j Vi fL dy (2-2)

coag

in Eq. (2-1). Hill [3] introduced an averaged particle radius into GDE. Here we introduce an averaged
particle volume v . Then ov/ot=0ov/or. This relation simplifies the second term at r.h.s. in Eq. (2-2) to

Jmo /-1 aV fd v(*lfdv — %Mgl (2_3)
Finally Eq. (2-2) is redefined by
oM, 0 w 0V
- = (Mu,)=1" +¢ M+, (2-4)
For example, Eq. (2-4) includes the following equations for Oth, 1st and 2nd moments:
oM, 0O
Mu. )=1+S, 2-5
%Jri(M )=b Dy v, (2-6)
ot Ox, ot
oM, 0O ov
M N> +2—M, +S, 2-7
or  ox (1, )= ot &7

J

where S, =I v' f. dv (S, isderived later) . These moments have units: M, [1/m’], M, [ m*m’]

coag

and M, [m’].
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Let me further transform Egs. (2-5)-(2-7) to another description. M is the number density of particles
per unit volume. Here M|, is replaced by pn, where n 1is the number density of particles per unit mass
[1/kg] and p is the total density of fluid [kg/m*]. Then Eq. (2-5) is rewritten as

%ﬂ%(pnuj): 1+, 2-8)

The density of particles is defined by pf , where £ 1is the mass fraction of particle. Also the density of

a liquid particle p, [kg/m’] multiplied by v [m’] and the number density on [1/m’] identifies to the
mass of particles per unit volume. Then we obtain the following relation:

pB=pypm (2-9)

Assuming the averaged volume of particles, M, = J:O vfdv=vM,=vpn. Then Eq. (2-8) 1s further

transformed to the equation for density of particles as

ap

0 . OV
P 2 ()= pﬁ(zv +a_tpn+slj (2-10)

J

V=47 / 3 in which 7 1is the averaged radius of a particle, and the time derivative is
ov/ot =4m’ OF/ot , giving another form of Eq. (2-10) as
opf 0 4 ,0r
o =p,| =m I +4m* = pn+S 2-11
o o (pﬁu,) p4(3ﬂr P lj (2-11)

Locally assuming averaged volume of particles identifies to the assumption of monodisperse system.
We’ve employed the same equation with Eq. (2-11) for moist-air and wet-steam flow simulations [4].

Then, local averaged radius of particles is obtained from pf = 4 p, 7 pn / 3 as the following equation:

/3
r :[ 3P J (2-12)
4rp,n

On the other hand, system locally including particles with a different radius is called polydisperse system.

3. Nucleation Model
We know primary two types for nucleation of particles. One is homogeneous nucleation where

condensation suddenly starts without nucleus. Another is heterogeneous nucleation starting from already
existing nucleus. Former nucleation induces a strong nonequilibrium condensation due to a high saturation
(supercooled) condition; the condensation is called nonequilibrium condensation. For example, wet-steam
flows in steam turbines are governed by such nonequilibrium condensation, while aerosol in atmosphere
is formed by condensation based on the heterogeneous nucleation in which a small particulate in
atmosphere may act as nucleus.

Here we introduce the nucleation rate / governing homogeneous nucleation based on the classical
nucleation theory [5].

First, a well-known model of nucleation rate [6] which we usually employ is defined by

1/2 2 *)
Izac( 20'3j 'O—Vexp _4rnro (3-1)
Tm o 3k, T

where a., m, o, p,, p,, k; and T are respectively the condensation coefficient, mass of a

molecular composing particles, surface tension of a particle, density of vapor, density of a particle,

Boltzmann constant and the temperature of a particle. 7 is the critical radius of a particle.

Nucleation rates not only for wet steam but also for aerosol, metal nanoscale particle, and polymer
nanoscale particle have already been modeled.

Let me explain the process of the derivation. First, primary thermodynamics underlying nucleation is
governed by Gibbs's free energy (GFE) based on the first and second laws of thermodynamics defined by
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G=U+pV-Ts (3-2)
where U, p, V', Tand s are the internal energy, pressure, volume, temperature and the entropy in a

closed system.
Differential of Eq. (3-2) are given by

dG=dU + pdV +Vdp —Tds — sdT (3-3)
Also the differential of internal energy U is defined by

dU =Tds— pdV (3-4)
If Eq. (3-4) is substituted into Eq. (3-3), the following relation is obtained:

dG =Vdp—sdT (3-5)

GFE identifies to the required energy for phase change from uniform vapor to nucleus of a particle like
the energy wall which must be climbed over. The difference of GFE can be derived using those under
vapor and nucleus conditions as

f— e —_— 2 —
AG = Gparticle - Gvapar - (ntotal nliquid )gvm + nliquidglm +4m o Mo1a18vm

= nliquid (glm - gvm)+ 4727/'20_

where g, and g, are GFE for one molecule in liquid and vapor states. n,, and n,,,, are the

(3-6)

number of total molecules which phase can be changed and the number which phase was changed to
liquid. 47’0 identifies to GFE originating from the surface tension o for a particle with radius 7.

dg,, and dg,  are obtained from Eq. (3-5) assuming an equal temperature field as
dgp = vlmdp9 dgv = vvmdp (3_7)
where v, and v, are the volumes for one liquid molecule and one vapor molecule. Eq. (3-7) can be

approximated assuming v, >>Vv, as

d(glm — 8w ) = (Vlm “Vom )dp = _vadp (3_8)
Vapor is assumed as ideal gas; substituting the equation of state pv,, =k,T into Eq. (3-8), then
dp
d(glm _gvm):_kBT; (3-9)

Integrating Eq. (3-9) from vapor saturation pressure p, to vapor pressure p, around a liquid particle with
radius r, the following equation is derived:

vd,
8w = 8o =T L =k, T In L (3-10)
b p Ps
Eq. (3-6) can be redefined using Eq. (3-10) by
AG ==ny ik, T ln%+ Ao (3-11)

N

S = p,/ p, as saturation ratio and v, n,,,.,= 4 / 3 rewrite Eq. (3-11) as
4 T
AG = —5721’3 kLlnS +4mic (3-12)

Y

Eq. (3-12) is always positive when S < 1, while the first term at r.h.s. is negative when § > 1.
Partially differencing Eq. (3-12) with respect to 7 can find the maximum value of GFE as

NG _ bl 15 86 =0 (3-13)
or v,

m

where r* is the radius of particle at the maximum GFE obtained by
«  2ov,

P T (3-14)
k,T InS
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" identifies to the critical radius of liquid particle. Then GFE has a maximum value AG under a
metastable condition. GFE decreases soon when 7 is larger or smaller than »*. GFE is also smaller

when S is larger because of smaller 7" .

The saturation pressure of a liquid particle with radius 7 can be derived from Eq. (3-14) as

20v,
L, =pe o 3-15
p.s,r ps Xp[kBT]" J ( )

This equation is known as Kelvin's equation. p_ , increases while increasing in 7 and reaches p_ at

r=r_ . AG is finally obtained as the following equation:

AG = ;717”*20' (3-16)

We know some methods introducing nucleation rate / based on mechanical and statistical approaches.
Those methods are generally too complicated to understand. Alternatively let me start from the following
definition proposed by Volmer [7] assuming that the rate of nucleation due to homogeneous nucleation has
a Boltzmann distribution:

k,T

On the other hand, [ is proportional to the product of the number of molecules 7, in a liquid particle

1=C exp[— Ej (3-17)

which is in equilibrium state at the critical radius »"and the collision frequency C~ for vapor molecules

colliding to the liquid particle given by
I1=C"n,, (3-18)
where
AG”
n, =n,__expl ——-— 3-19
eq total p[ kBT J ( )

n,., is the total number of vapor molecules which can be changed to liquid molecules. C” is defined

according to the kinetic theory of molecule by

C'=au,xr’n,, =a.|—2—xr’n

total total (3 _20)

m
where u, 1is the mean averaged molecular speed and m is the mass of a liquid molecule. Using Egs.
(3-18)-(3.20), the following nucleation rate is derived:
I=a, 8k, T rPn  exp _AG (3-21)
m k,T
Helfgen [8] modified Eq. (3-21) to

I=za,, /Sk—BT;z rn exp(— ﬁj (3-22)
m kT

where z is Zeldvich nonequilibrium factor. Hill [3] and Kotake [9] defined the similar equation:
I=za, N RV exp _AG (3-23)
2mmk, T k,T

Since the vapor pressure is p, =n, kT , Eq. (3-23) can be rewritten as the same equation to Eq. (3-22).

total

The detail derivation of z is explained in Refs. [5] [10]. z is a correction coefficient to take the
second-order term of AG’ into account given by
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v, o

= 3-24
T2\ kT G-24)
Substituting Eq. (3-24) to Eq. (3-23), then
2 *
A
] — zac pv O-(vlm) nwml eXp _ i (3_25)
N2mmk, T\ kT k,T

Eq. (3-25) identifies to the equation proposed by Debenedetti [11].
Also substituting Eq. (3-24) to Eq. (3-22),

26 AG”
I = ac %Vlmntzoml exp(_ kBTj (3-26)

Since v,,=m/p, and n,,=p, / m , Eq. (3-27) can be rewritten as

total —

2 *®
I=a. 263 P exp(— AG j (3-27)
m’ p, k,T

Eq. (3-27) identifies to the equation employed by Young [6] and Schnerr [12].
We get a conclusion that nucleation rates defined for wet-steam flows, aerosol particles, metal
nanoscale particles and polymer particles are basically the same model. Note here that all the existing

models for nucleation rate assume ideal gas, i.e. pv, =k,T . Debenedetti [11], Kwauk [13], Helfgen [8]

and Tiirk [14] studied Rapid Expansion of Supercritical Solutions (RESS) based on the nucleation rate
model for polymer nanoscale particles. RESS is a process for producing small polymer particles.
Supercritical carbon dioxide (SCO2) is employed as a solvent. SCO2 with a solute material streaming in a
capillary nozzle is expanded in an expansion chamber, resulting in the loss of solvent power and hence
precipitation of the solute. Debenedetti [11] found that non-ideality of SCO:2 increases the free energy
barrier against nucleation of solute material, and the increase may reduce the number density of particles;
the classical nucleation theory originally derived assuming an ideal gas is not accurate for SCOz. It
suggests that EOS for ideal gas applied to nucleation rate should be replaced by a general EOS which is
accurate even for SCOsz.
For example, we know a EOS for SCOz proposed in [UPAC [15] defined by

9 J; ‘ '
Prea = PRT| 1+ 0> > b (r-1) (00— 1)'} (3-28)
i=0 j=0

where the parameters in Eq. (3-28) were also defined in ITUPAC.
Now the difference between EOS for ideal gas and that by Eq. (3-28) is defined by ¢, then

preal = pvRT¢ = ntotalkBT¢ or prealvlm = kBT¢ . Eq (3-14) can be redeﬁned by
- 20v,,
k,T¢ InS

Using Egs. (3-28) and (3-29) coupled with accurate thermophysical properties, we successfully simulated
a high-pressure wet-steam flow through a nozzle [16] which problem cannot accurately be predicted by
the nucleation model based on ideal-gas EOS.

(3-29)

4. Condensation Model

Here the growth rate dv/dt for condensation of liquid particles is modeled. The averaged number of
incoming and outgoing molecules on a liquid particle with an averaged radius 7 per unit time is defined
by

T

m ~ 27mbk , T

Assuming that liquid particles grow (evaporate) due to the collision (separation) of vapor molecules and
the radius of liquid particles are sufficient smaller than the mean-free path of vapor molecules, then

(4-1)

c
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condensation follows Hertz-Knudsen's law. The growth rate dv/dr is derived using v =v, n as

D, =, 477 Lo - L (42)
dt dt 2mk, T \[27mk,T,

where 7, is the temperature of liquid particle. Assuming 7 =17,,

B P (5-1) 43)
dt 2mmk , T

1
Since 477’ = (367[)5\7% from v=47z7"/3 and p,=n,, k,T ,Eq. (4-3) can be written as

ﬂ = acvlm (3672.)1/3 ‘72/3ntotal kBT (S - 1) (4-4)
dt \ 272m

Eq. (4-4) identifies to the equation proposed by Pratsinis [2].
Also dv/dt=4n7"dr/dt changes Eq. (4-4) to the following equation:

dr p p
—=a,v 2 - > 4-5
dt ¢ 1"1[\/27zkaT \/27zkaT[J (+3)

Using k, =mR , Eq. (4-5) can be rewritten as

ﬂzavﬂ pv _ ps =& pv _ ps (4_6)
dt° m\~N2aRT \27RT, | p,\N27RT \27RT,
Eq. (4-6) identifies to the equation employed by Young [5]. Consequently Egs. (4-4), (4-5) and (4-6) are
the same equation. Note that these models can only be used for condensation under Hertz-Knudsen's law.
Condensation in wet-steam flows may not follow Hertz-Knudsen's law. We know Gyarmathy's model [17]

and Kantrowitz's modification [18] for such dense condensation. The detail for nucleation and
condensation are explained in books and reviews [19] - [21].
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Chapter D Modeling for Condensate Flows

1. Equations for moist-air flows

Actual atmosphere includes a finite amount of water vapor. It plays an important role in weather
conditions and in the earth's various environments. Water vapor occasionally condenses over aircrafts
which is cruising in a high humid condition. Condensation of water vapor results in a change of pressure
distributions on the wing surface and it may reduce the lift/drag ratio.

A typical onset of condensation over a wing in atmospheric wind tunnel conditions is started by a
rapid flow expansion in supersonic region. Then, both the local pressure of water vapor p» and the local
saturation pressure of water vapor ps decrease. Since ps soon reaches a lower value than pv according to
the decrease of local temperature, the supersaturation ratio S (the relative humidity @ is @ = S x 100),
defined by the ratio of pv and ps, increases. The ratio S may soon go beyond the saturation ratio S =1
through the inlet of the wind tunnel, and it reaches S »1 rapidly over the wing without condensation. A
huge amount of nuclei is produced from pure water vapor at such a sufficiently high-supersaturated
condition.

On the other hand, the phase change in atmospheric flight conditions may be generally dominated by a
heterogeneous nucleation of water vapor, because small particulates, such as soot or aerosols may behave
as a nucleus of condensation.

Two-dimensional transonic flows of moist air over an airfoil in atmospheric wind tunnel conditions
have been experimentally and numerically studied by Schnerr and Dohrmann [1][2]. The experimental
Schlieren photographs present a condensation shock associated with the heat release of water ahead of an
intrinsic shock wave. Our group presented a numerical simulation of three-dimensional transonic viscous
flows over ONERA M6 wing assuming atmospheric wind tunnel conditions [3] and those flows over a
delta wing assuming atmospheric flight condition [4]. Comparison of results obtained assuming
atmospheric wind tunnel and flight conditions was also reported in our previous paper [5].

We developed the fundamental equations for simulating three-dimensional compressible viscous flows
of moist-air in general curvilinear coordinates. Flows are supposed to be a homogeneous fluid without any
slip between air and water droplets assuming that condensed water droplets are smaller than 1xm and

the mass fraction £ is less than 10%.
These equations are written with SST turbulence model [6] as follows:

. OF,
Qt+L:&+S (1-1)
95, 05
(o] C oy ] 0] 0]
pU, puU, +0¢, [0x,p 0y 0
pU, pu,U, +0¢&, [0x,p 0 0
pUs pusU, +0&, /0x;p G 0
+ , T, +K0T| Ox; 0
R A T I o WP s
pv vai @Cj O _FC
pn pnU, 0 1
pk PkU, Oy S
P i L IOG)UI _ L (Trq i L Sa) |

where p, p,, B and n are the total density of moist-air, density of water vapor, mass fraction of

condensed water droplets and the number density of water droplets per unit mass. £ and @ are the
turbulent kinetic energy and the dissipation rate. /°, and / in source term S are the mass generation

rate due to condensation which was basically the same with that at Chapter C, Eq. (2-11) and the
homogeneous nucleation rate [7] [Chap. C, Eq. (3-2)]. oj,and o, are the diffusion terms for SST
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model, and §,and S are the source term.

Our group derived the following approximate equation of state for moist air considering the release of
latent heat:

(- AR,
C,,—(1-B)R,
where #,,, R, and C, are the heat of formation, specific heat ratio and the isobaric specific heat for

Om > m

p=pR,T(1-p)= e~ puns2—~ ph, | (1-2)

moist air. These values are obtained from linear combination between those of gas and liquid.

2. Numerical method
FDS derived as Eq. (3-8) in Chapter B is basically employed for discretizing Eq. (1-1) with Compact
MUSCL [Chap. B, Eq.(5-1)] for convection term and the second-order central difference is applied to
viscous term.

The numerical flux (F)) for F, defined at the interface between the control volume ¢and /+1

1+1/2
in each coordinate i (i =1,2,3) can be written by FVS form as

(E )€+1/2 = ( i+ )€+1/2 + (F't7 )€+1/2 = (A: )€+1/2Q[’L+I/2 + (A; )4+1/2 Q/firl/2 (2-1)
where Q" and Q" are the primitive vectors extrapolated by the Compact MUSCL from left and right

+

directions. FVS form for (A,.- ) 1,0, 1s given in general curvilinear coordinates by

+ — + + ﬂ«i li
(4),,,0" =(5,'KL),., ,0" = 20" +— L0, + 220, (2-2)
C & c

g, are the metrics (=V ¢, -VE). Upper subscript M is replaced by L and R. L, and A, are the matrices
composed of eigenvectors and characteristic speeds (eigenvalues). lﬁl and A, are defined by
By = (- 25))2

Zy= v )24,
where /12 (j=14,5) are calculated from

(2-3)

7 =4, £[a])2 (24)
Ay (j=14.5) are the characteristic speeds defined by
Ay =U,
Ay =U;+c\g; (2-5)
s =U;—cyg;
¢ isthe speed of sound. O and Q, are the sub-vectors given by
Qia = ﬁch + An_/thd
Oy = (Amicz/gu)Qic +p0,
p=0,-0"
&, =0, 0"
where the sub-vectors Q,., 0,, 0,, and Q, arederived as
0.=[0 & jox, o jox, ofjox, U, 0 0 0 0 of
0.=lp - —jn —ju, =7 0 0 0 0 of @)
0, =-U, @& /jox, o jox, oé&jox, 0 0 0 0 0 Of
0,=[l w u, u, (exp)p pJp B n k of
7=y-1 and ¢’ =yuu;/2—h,.

2-6)

25



Eq. (2-1) can be alternatively written by FDS form as

(E )/+1/2 = %[E (Q;+1/2 )+ F, (Q(flj-l/2 )_ ‘(Ai )e‘+1/2 ‘( Q/Iirl/z - Q;+1/2 )] (2_8)
‘(/L )f+1 /2‘Qj‘fl »(I=123;M = L,R) is calculated from the following subvectors:
_ A 4,
(Aii )I+1/2‘QM =4.0" +57\/;7Qm + Ell; on (2-9)
where
Al = A= 45])/2
. (I_“‘| |_’5|) _ (2-10)
|/1ib = q;tz'4| +|/Ii5|)/2 _|ﬂ’il|
and
Qa = ﬁQc + A’%téd
Qb =_(An_£52/giibic +Z_9§d @-11)
p=0.-0"
N7 =0,-0"

Variables with upper bar are obtained by Roe’s averaging.
LU-SGS method [Chap.B, Eq. (6-8)] is employed for time integration. The following two-step
processes are executed:

DAQ" = RHS +AtG*(AQ") o1
AQ =AQ" - D AtG(AQ) )

where
+ *
i,ﬁl,k+ (A3 O )i,j,kfl

G(AQ ) = (‘{ AQ )i+1,j,k + (A; AQ )i,j+1,k + (A; AQ )i,j,k+1
A" AQ(f =1,2,3) may be calculated from Eq. (2-2) by replacing Q" toAQ .

¢(a0) = (4807, , + (420

3. Equations for wet-steam flows in turbomachinery

Condensation observed in steam turbines is of quite important in engineering. The phase change may
be governed by homogeneous nucleation and nonequilibrium process of condensation. The latent heat of
water is released to surrounding non-condensed vapor, increasing temperature and pressure. It is known
that condensed water droplets affect the performance of the steam turbine. The blade of the steam turbine
is occasionally damaged by the erosion due to the interaction with the condensed water droplets.

Transonic wet-steam flows in a steam turbine cascade channel have been studied by Bakhtar and
Mohammadi Tochai [8], Moheban and Young [9], and Young[10]. Young[10] calculated two-dimensional
wet-steam turbine cascade flows by solving Euler equations with a Lagrangian method for integrating the
growth equation of a water droplet through each streamline.

Flows are supposed to be a homogeneous fluid without any slip between water vapor and water
droplets assuming that condensed water droplets are smaller than 1xm and the mass fraction S is less

than 10%. In addition, centrifugal and Coriolis forces are added for three-dimensional flows through
turbine rotor blade rows. u=w+ Q2 xr is arelation between flow velocities in rotors (relative velocities)
w=(w, w, w;) and those in stators (absolute velocities) u=(u, u,u;), where £ and r are the

vectors of rotational angular velocity and the radius. Eq. (1-1) is transformed to the equations for relative
velocity field as

Qr*%:%” (3-1)
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where p is the total density of wet-steam (note that the equation for p, in Eq. (1-1) is removed). W, is the

vectors of contravariant relative velocities. Source terms of momentum equations in &, and &, directions
correspond to centrifugal and Coriolis forces. Eq. (1-2) as EOS is transformed to that for relative velocities as

p=pR,T(1-pB)=

cpm(l__(lﬂ_)];") X le= p(w* = 20w, )12 - ph,, | (3-2)

where v, is tangential velocity of rotation.
Numerical methods are basically the same with those for moist-air flows. But, Ay ( Jj :l,4,5) are the

characteristic speeds defined using relative contravariant velocities by

ﬂll = VI/t
s =W, +c\g; (3-3)
is =W, =g,

and velocities in subvectors Q,., 0,, Q,, and Q, arealso replaced by relative velocities as

0.=[0 a&¢/ox, ocjox, o&jax, W, 0 0 0 0 Of

0.=l¢ 7w -, -, -7 0 0 0 0 of (3-4)
Qim:[_W; oc;[ox, o fox, o fox; 0 0 0 0 0 O]T

0, :[1 wow, W (€+p)/,0 p./p B n k a)]T

where ¢ =yww,/2—h,,.
Currently our group is developing an in-house code called ‘Numerical Turbine” which can simulate
not only wet-steam flows but also moist-air flows considering nonequilibrium condensation through

multi-stage stator-rotor blade rows in turbomachinery. Recent progresses have been reported at ASME
Turbo Expo [11]-[15].
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Chapter E Preconditioning Method

1. Preconditioned equations

Ordinary compressible flow solvers cannot be applied to the calculation for very slow flows such as
natural convection. One of the reasons is the so-called stiff problem that occurs when flows at a very low
Mach number are calculated by compressible flow solvers. The relatively high speed of sound compared
with physical velocities in these flows restricts the Courant-Friedrich-Lewy (CFL) number. Then, we need
a large number of time-marching iterations to get a solution. Turkel [1], Choi and Merkle [2], and Weiss
and Smith [3] have developed a preconditioning method that is a numerical approach to overcome the stiff
problem. A numerical speed of sound has been derived and applied to the pseudo-compressibility method.
Fundamental equations are smoothly switched to different equations according to the value of the
numerical speed of sound. The equations are completely the same with the CNS when the value is set to
the physical speed of sound, while the incompressible Navier-Stokes equations with the
pseudo-compressibility term and the temperature equation are formed by setting the value to that in a
same order of local physical velocity. We have employed the same approach for simulating natural
convective flows.

CNS modified by the preconditioning method are written in general curvilinear coordinates as

o, o _oF,;
o 0E o

where /" is the preconditioning matrix. The elements in 7/~ are fundamentally the same as those of the
formulation by Weiss and Smith [3], represented by

(1-1)

6 0 0 0 Py
Ou, p 0 0 Prih
r=4e U, 0 Yo, 0 Pru, (1_2)

0 u, 0 0 P Prits
_Hh -1 pu, pu, pu; prh +,0Cp_

where @ is the preconditioning parameter defined by
0=1/U’ - p,/pC, (1-3)
h=(e+p)/p and p,=06p/oT. p,=—p/T if ideal gas is taken into account. U,is a switching

parameter. If U, equals the physical speed of sound, & is to be zero and the equations are reduced to

7

CNS. O is the vector of unknown primitive variables defined by Q =[p u, u, u, T1".

2. Preconditioned flux-vector splitting form [4]
The numerical flux (F)) for F,in Eq. (1-1) defined at the interface between the control volume /¢

and /+1 ineach coordinate i(i=1,2,3) can be written by FVS form as

+ - N AL - AR
(Fi)e+1/2 = (Fi )e+1/2 +(Fi )e+1/2 = (Ai )Z+1/2Qf+1/2 +(Ai )m/z Or11/2 (2-1)

A" are the preconditioned Jacobian matrices composed of only positive or negative characteristic speeds.

1

0+1/2

Ofand OF are the unknown vectors extrapolated by Compact MUSCL from left and right directions.
The preconditioned FVS (PFVS) form [4] for (;1[; )f " /QQXI /2 1s derived as

Y T
(Az%)m/zQM = (FLilAiLi )M/zQM = ﬂﬂFQM +——=0, +é—'§ ib (2-2)
CiNE8ii i

L, and A, are the matrices composed of preconditioned eigenvectors and preconditioned characteristic
speeds (eigenvalues). 2%, and 1, are defined by

29



f :(j';_fs) 2

s ~ (2-3)
ﬂ (51/114 giﬂiS)/(i_fi)_ﬂil
where 4 (j=1,4,5) and /] are calculated by
7=l =iy )2 2-4)
07 = pU /( U(1-a)/ 2% ¢z, ) (2-5)
/i,-j (j=14,5) are the preconditioned characteristic speeds defined by
2”\[1 =U,

d =+ a)U, 12+ ¢,\g, (2-6)
Ais = (1 + a)Ui /12— éi\/ 8ii
5,- is the numerical speed of sound. It is derived as

g =\/U,.2 (1-a)/g; +4U? /2 (2-7)
and a = Uf(pp +pT/pCp), where p, =0p/dp. p, = 1/(RT) if ideal gas is assumed. If U, equals the

physical speed of sound, « is reduced to unit. Then, the characteristic speeds and the physical speed of
sound for compressible flows are recovered. 0, and @, are the sub-vectors derived as

Qm =4"0,+pUQ,
(pUc /g,,)Q, (é;wéiz/Urzpd

g ; and U [= (6§ /ax )q]+1 ( j:1,2,3)] are the j-th element of O and the contravariant velocities

(2-8)

extrapolated by Compact MUSCL. Q,_and Q, are sub-vectors given by
O.=[0 og/ox, og/ox, o&jox, U T (2-13)
O, = w w, u (e+p)pl (2-14)
3. Preconditioned FDS form [4]

FDS method based on Roe’s approximate Riemann solver [Chap. B, Eq. (3-8)] is employed for
discretizing convection terms. The numerical flux Eq. (2-1) is rewritten as

(E')M/z :%[E(Ail/z)""E(Aﬁm) - ‘(‘af)zmz‘( A,gRH/z _QAzLH/z)] (3-1)

The FDS term ( )M/2 0" 1s derived using PFVS form Eq. (2-2) as
A A | 4
|(Ai )£+1/2|Q |/111|FQ + \/—Qza T 22 Oi (3-2)

All the components in Eq. (3-2) are the same with those for FVS form.

4. Preconditioned LU-SGS method [4]
LU-SGS method [Chap. B, Eq. (6-8)] can be modified to the following preconditioned form:

IDAQ = RHS +MG*(AD")

. . . (4-1)
AO =A0" -T DA (A0 )

where G* and G~ are the functions composed of time derivatives of numerical flux at neighboring
grid points defined by
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G(40") = (440°),,, + (L40°), ..+ (£40"),,

S e e (4-2)
G40 ) = (440 )., + (4o ), + (£40),,.,

flfAQ (i = 1,2,3) may be calculated from Eq. (2-2) in which QM is replaced by 4 Q )

As the applications of preconditioning method, we simulated natural convection and that coupled with

heat conduction in solid [5], those with condensation [4], and very-slow flows of moist-air in a cooled

pipe [6].
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Chapter F Modeling for Thermophysical Flow

1. Modification of preconditioned equations
CNS equations with a source term modified by the preconditioning method are written in general
curvilinear coordinates as

00 oF _OF,
rQ ok ok ¢ (1-1)
o 05 0&
where all the terms in Eq. (1-1) except for source term S is the same with those of Eq. (1-1) in Chapter E.
Source term includes some additional physics, for example gravitational force toward x, (: y) is taken
into accountas S=J [O 0 (ps - p)g 0 (ps - p)u2 g]T ,where p  and g are the referenced density

and the gravitational acceleration.
To consider accurate thermophysical properties such for supercritical fluids, not only the variation of properties

with respect to temperature but also that with respect to pressure should be taken carefully into consideration. The

preconditioning matrix /" is slightly modified [1] to

0 0 0 0 or
O u, P 0 0 Priy
I = Ou, 0O p O P, (1-2)
0 u, 0 0 p Prs
_ﬁh—(l—ph,,) puy puy  puy prh+phy |

where 4 = (e + p)/ p . The preconditioning parameter & is also redefined by
1 _Pr (l — ,th)

u;,  ph

pr=0p/0T , h,=0h/OT and h,=0h/dp.

0= (1-3)

2. Thermophysical models

Substances have their own thermophysical properties. The values are changed according to the values of
temperature and pressure. The phase is occasionally changed among gas, liquid, and solid. In addition, substances
become supercritical fluids if the temperature and pressure exceed their critical values. Especially, supercritical
fluids have anomalous properties near the critical point: maximum peak of isobaric specific heat and that of reaction
rate; rapid change of solubility, zero surface tension, and so on. These anomalous properties are utilized for the
decomposition of waste, the fabrication of nanoscale particles, heat exchangers, and so on, by chemical, material
and mechanical engineers. Eckert et al. [2] reviewed the research works of supercritical fluids in the Nature.

Ordinary CFD solvers employing the equation of state (EOS) for ideal gas cannot predict actual thermophysical
values in flows of arbitrary substance. Fortunately, primary thermophysical properties such as density, viscosity and
thermal conductivity have been mathematically modelled by chemical engineers for most of substances. For
examples, we know several EOSs based on cubic-type and virial-type models. Cubic-type EOS is formed by a
cubic equation based on the van der Waals EOS. The form is not so complicated as compared with that of
virial-type EOS. We simulated thermal convection of supercritical carbon dioxide [3] using our preconditioning
method coupled with Peng-Robinson EOS (P-R EOS) [4] which is a modified EOS from the van der Waals EOS.
The obtained results indicated that the solution is essentially different from ordinary solutions obtained by assuming
an ideal gas. P-R EOS could be applied to the carbon dioxide reasonably. However, P-R EOS could not predict
water accurately. It suggests that cubic-type EOS cannot be used as a general-purpose EOS for arbitrary substance.

Virial-type EOS is formed by a polynomial equation. Although the computational cost is relatively higher than
that of cubic-type EOS, the accuracy is sufficiently preserved even when the temperature and pressure are changed
between two phases. For example, a virial-type EOS for carbon dioxide was standardized in [UPAC [5] defined as
a polynomial equation by
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p:pRT{1+a)ZQ:ZaUz' 1 a) 1)} (2-1)

i=0 j
where @=p/p , t=T"/T and actually p" =468 [kg/m’] and T =304.21 [K] for carbon dioxide.
Parameters a; and J; are referred from IUPAC [5]. Using Eq. (2-1), the isobaric and isometric specific heats are

obtained from the following equations:

P 2
C,=| %{ ZT’j j dp+C (2-2)
0
T
C,=C,+ T @sor), (2-3)
p* (0p/dp),

where C““ is the isometric specific heat for 1deal gas.

EOS for water was also defined in IAPWS IF97 [6]. Density is obtained by the virial-type EOS as a function
of temperature and pressure. Not only the specific heats but also the related partial derivatives can be derived from
the EOS.

As other properties, the molecular viscosity 4 and thermal conductivity x were further modeled using a

polynomial equation as

m:gg (24)
ln— izz:d /o (2-5)

x i=l j=0

where = Z; et and x, = Z e,r'”"* . The coefficients b;,c;,d; and e, were defined in IUPAC.

We know some databases for thermophysical properties such as that developed by NIST. Currently we use the
thermophysical database PROPATH [7] developed by Kyushu University: a database of thermophysical properties
for 48 substances. Most of the mathematical models for EOS, molecular viscosity, thermal conductivity, isobaric
and isometric specific heats and so on, are programmed as a polynomial equation which has been standardized by
an authorized conference or society. Since the anomalous property is quite deeply related to the flow feature near the
critical point, the accurate evaluation is absolutely necessary for simulating supercritical-fluid flows. Our
preconditioning method was fully coupled with PROPATH. Thermophysical properties are programmed as
functions for each substance in PROPATH. The set of the functions are contained in a same file as the library file for
each substance. The names of the functions are all the same in the different libraries even if the substance is different.
This feature enables us to change the substance quite easily. Only if the library file is replaced to the other, we can
simulate thermophysical flows of different substance, such as carbon dioxide, water, nitrogen, hydrogen, methane,
and so on.

Currently we are developing another in-house code called ‘Supercritical-fluids Simulator (SFS)’ which is based
on such preconditioning method and PROPATH for simulating not only very slow flows but also high-speed flows
beyond supersonic of gas, liquid, and supercritical fluid considering the phase change. As one of the final
destinations of SFS, we simulated Rapid Expansion of Supercritical Solution (RESS) [8] process using SFS [9] [10].
We seamlessly simulated supercritical CO2 (SCO2 ) entering the nozzle, SCO: crossing the critical
pressure in the nozzle, supersonic CO2 gas expanding into the expansion chamber, shocks and CO2
condensation in the chamber, nucleation, condensation, and coagulation of polymer particles. Finally all
physics expected in RESS could be totally simulated [10].
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